Mots-clés : nsatz equations.
@article{TMF_2004_139_1_a8,
author = {Yu. G. Stroganov},
title = {Quasifree {States} in {Some} {One-Dimensional} {Quantum} {Spin} {Models}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {112--128},
year = {2004},
volume = {139},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2004_139_1_a8/}
}
Yu. G. Stroganov. Quasifree States in Some One-Dimensional Quantum Spin Models. Teoretičeskaâ i matematičeskaâ fizika, Tome 139 (2004) no. 1, pp. 112-128. http://geodesic.mathdoc.fr/item/TMF_2004_139_1_a8/
[1] H. A. Bethe, Z. Phys., 71 (1931), 205–226 | DOI | Zbl
[2] R. Bakster, Tochno reshaemye modeli v statisticheskoi mekhanike, Mir, M., 1986 ; V. E. Korepin, I. G. Izergin, N. M. Bogoliubov, Quantum Inverse Scattering Method, Correlation Functions and Algebraic Bethe Ansatz, Cambridge Univ. Press, Cambridge, 1993 ; F. H. L. Essler, V. E. Korepin, Exactly Solvable Models of Strongly Correlated Electrons, World Scientific, Singapore, 1994 ; P. Schlottmann, Int. J. Mod. Phys. B, 11 (1997), 355–667 | MR | MR | Zbl | MR | Zbl | DOI | MR | Zbl
[3] F. C. Alcaraz, M. N. Barber, M. T. Batchelor, Ann. Phys., 182 (1988), 280–343 ; F. C. Alcaraz, M. N. Barber, M. T. Batchelor, R. J. Baxter, G. R. W. Quispel, J. Phys. A, 20 (1987), 6397–6409 | DOI | MR | Zbl | DOI | MR
[4] R. J. Baxter, Adv. Stud. Pure. Math., 19, 1989, 95–116 | MR | Zbl
[5] V. Fridkin, Yu. G. Stroganov, D. Zagier, J. Phys. A, 33 (2000), L121–L125 ; J. Stat. Phys., 102 (2001), 781–794 ; ; Yu. G. Stroganov, J. Phys. A, 34 (2001), L179–L186 ; E-print nlin.SI/0010021E-print cond-mat/0012035 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR
[6] R. J. Baxter, Stud. Appl. Math., 50 (1971), 51–69 | DOI | MR
[7] A. V. Razumov, Yu. G. Stroganov, J. Phys. A, 34 (2001), 3185–3190 ; ; M. T. Batchelor, J. de Gier, B. Nienhuis, J. Phys. A, 34 (2001), L265–L270 ; ; A. V. Razumov, Yu. G. Stroganov, J. Phys. A, 34 (2001), 5335–5340 ; ; Combinatorial nature of ground state vector of $O(1)$ loop model, ; P. A. Pearce, V. Rittenberg, J. de Gier, Critical $Q=1$ Potts model and Temperly–Lieb stochastic processes, ; A. V. Razumov, Yu. G. Stroganov, O(1) loop model with different boundary conditions and symmetry classes of alternating-sign matrices, ; J. de Gier, M. T. Batchelor, B. Nienhuis, S. Mitra, The $XXZ$ spin chain at $\Delta=-1/2$: Bethe roots, symmetric functions and determinants, ; Ю. Г. Строганов, ТМФ, 129:2 (2001), 345–359 ; N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, J. Phys. A, 35 (2002), L385–L391 ; ; M. T. Batchelor, J. de Gier, B. Nienhuis, Int. J. Mod. Phys. B, 16 (2002), 1883–1890 ; ; J. de Gier, B. Nienhuis, P. A. Pearce, V. Rittenberg, Phys. Rev. E, 67 (2003), 016101–016104 ; E-print cond-mat/0012141E-print cond-mat/0101385E-print cond-mat/0102247E-print math.CO/0104216E-print cond-mat/0108051E-print cond-mat/0108103E-print math-ph/0110011E-print hep-th/0201134E-print math-ph/0204002E-print cond-mat/0205467 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | MR | DOI | MR | Zbl | DOI | MR | MR | DOI | MR | DOI
[8] Yu. G. Stroganov, “The 8-vertex model with a special value of the crossing parameter and the related $XYZ$ spin chain”, Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory, eds. S. Pakuliak, G. von Gehlen, Kluwer, Amsterdam, 2001, 315–319 | DOI | MR | Zbl
[9] F. C. Alcaraz, Yu. G. Stroganov, J. Phys. A, 35 (2002), 3805–3820 ; ; 35, 2002 ; ; 36, 2003 ; E-print cond-mat/0201354E-print cond-mat/0205567E-print cond-mat/0212475 | DOI | MR | DOI | MR | DOI | MR | Zbl
[10] J. H. H. Perk, C. L. Schultz, Phys. Lett. A, 84 (1981), 407–410 ; C. L. Schultz, Physica A, 122 (1983), 71–88 | DOI | MR | DOI | MR
[11] B. Sutherland, Phys. Rev. B, 12 (1975), 3795–3805 | DOI
[12] N. Y. Reshetikhin, P. B. Wiegmann, Phys. Lett. B, 189 (1987), 125–131 ; H. J. de Vega, Int. J. Mod. Phys. A, 4 (1989), 2371–2463 | DOI | MR | DOI | MR | Zbl
[13] L. Mezincescu, R. I. Nepomechie, P. K. Towsend, A. M. Tsvelick, Nucl. Phys. B, 406 (1993), 681–707 | DOI | MR | Zbl
[14] H. J. de Vega, A. Gonzáles-Ruiz, Nucl. Phys. B, 417 (1994), 553–578 | DOI | MR | Zbl
[15] Yu. G. Stroganov, A new way to deal with Izergin–Korepin determinant at root of unity, E-print math-ph/0204042