Quasifree States in Some One-Dimensional Quantum Spin Models
Teoretičeskaâ i matematičeskaâ fizika, Tome 139 (2004) no. 1, pp. 112-128
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use numerical methods to investigate the $SU_q(N)$ Perk–Schultz spin chain at the special quantum parameter value $q=-e^{i\pi/N}$. We discover simple laws applicable to a considerable part of the Hamiltonian spectrum, which in particular contains the energy of the ground state and the nearest excitations. The phenomenological formulas obtained resemble formulas for the spectrum of the free-fermion model. We formulate several hypotheses, some of which can be justified by constructing exact solutions of the system of Bethe-ansatz equations for finite-length chains. We obtain two sets of solutions of these equations. The first corresponds to the special value of the quantum parameter $q$ and, in particular, describes the model ground state, which is antiferromagnetic. The second set of solutions describes a part of the spectrum belonging to the sectors where the numbers $n_i$ of particles of different types ($i=0,1,\dots,N-1$) do not exceed unity for all the types except one. For this set, we obtain a simple spectrum at arbitrary values of $q$. It is hypothesized that this spectrum and the solutions of the Bethe-ansatz equations found in a closed form are intimately related to the existence of a special eigenstate for the transfer matrix of the auxiliary inhomogeneous $SU_q(N-1)$ vertex model that is involved in constructing the system of Bethe-ansatz equations of a matrioshka structure. Indirect arguments based on combinatorial properties of the wave function of the relevant state are given to support this hypothesis.
Keywords: Perk–Schultz model, finite spin chains, exact solution of Bethe
Mots-clés : nsatz equations.
@article{TMF_2004_139_1_a8,
     author = {Yu. G. Stroganov},
     title = {Quasifree {States} in {Some} {One-Dimensional} {Quantum} {Spin} {Models}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {112--128},
     year = {2004},
     volume = {139},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_139_1_a8/}
}
TY  - JOUR
AU  - Yu. G. Stroganov
TI  - Quasifree States in Some One-Dimensional Quantum Spin Models
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 112
EP  - 128
VL  - 139
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_139_1_a8/
LA  - ru
ID  - TMF_2004_139_1_a8
ER  - 
%0 Journal Article
%A Yu. G. Stroganov
%T Quasifree States in Some One-Dimensional Quantum Spin Models
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 112-128
%V 139
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2004_139_1_a8/
%G ru
%F TMF_2004_139_1_a8
Yu. G. Stroganov. Quasifree States in Some One-Dimensional Quantum Spin Models. Teoretičeskaâ i matematičeskaâ fizika, Tome 139 (2004) no. 1, pp. 112-128. http://geodesic.mathdoc.fr/item/TMF_2004_139_1_a8/

[1] H. A. Bethe, Z. Phys., 71 (1931), 205–226 | DOI | Zbl

[2] R. Bakster, Tochno reshaemye modeli v statisticheskoi mekhanike, Mir, M., 1986 ; V. E. Korepin, I. G. Izergin, N. M. Bogoliubov, Quantum Inverse Scattering Method, Correlation Functions and Algebraic Bethe Ansatz, Cambridge Univ. Press, Cambridge, 1993 ; F. H. L. Essler, V. E. Korepin, Exactly Solvable Models of Strongly Correlated Electrons, World Scientific, Singapore, 1994 ; P. Schlottmann, Int. J. Mod. Phys. B, 11 (1997), 355–667 | MR | MR | Zbl | MR | Zbl | DOI | MR | Zbl

[3] F. C. Alcaraz, M. N. Barber, M. T. Batchelor, Ann. Phys., 182 (1988), 280–343 ; F. C. Alcaraz, M. N. Barber, M. T. Batchelor, R. J. Baxter, G. R. W. Quispel, J. Phys. A, 20 (1987), 6397–6409 | DOI | MR | Zbl | DOI | MR

[4] R. J. Baxter, Adv. Stud. Pure. Math., 19, 1989, 95–116 | MR | Zbl

[5] V. Fridkin, Yu. G. Stroganov, D. Zagier, J. Phys. A, 33 (2000), L121–L125 ; J. Stat. Phys., 102 (2001), 781–794 ; ; Yu. G. Stroganov, J. Phys. A, 34 (2001), L179–L186 ; E-print nlin.SI/0010021E-print cond-mat/0012035 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR

[6] R. J. Baxter, Stud. Appl. Math., 50 (1971), 51–69 | DOI | MR

[7] A. V. Razumov, Yu. G. Stroganov, J. Phys. A, 34 (2001), 3185–3190 ; ; M. T. Batchelor, J. de Gier, B. Nienhuis, J. Phys. A, 34 (2001), L265–L270 ; ; A. V. Razumov, Yu. G. Stroganov, J. Phys. A, 34 (2001), 5335–5340 ; ; Combinatorial nature of ground state vector of $O(1)$ loop model, ; P. A. Pearce, V. Rittenberg, J. de Gier, Critical $Q=1$ Potts model and Temperly–Lieb stochastic processes, ; A. V. Razumov, Yu. G. Stroganov, O(1) loop model with different boundary conditions and symmetry classes of alternating-sign matrices, ; J. de Gier, M. T. Batchelor, B. Nienhuis, S. Mitra, The $XXZ$ spin chain at $\Delta=-1/2$: Bethe roots, symmetric functions and determinants, ; Ю. Г. Строганов, ТМФ, 129:2 (2001), 345–359 ; N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, J. Phys. A, 35 (2002), L385–L391 ; ; M. T. Batchelor, J. de Gier, B. Nienhuis, Int. J. Mod. Phys. B, 16 (2002), 1883–1890 ; ; J. de Gier, B. Nienhuis, P. A. Pearce, V. Rittenberg, Phys. Rev. E, 67 (2003), 016101–016104 ; E-print cond-mat/0012141E-print cond-mat/0101385E-print cond-mat/0102247E-print math.CO/0104216E-print cond-mat/0108051E-print cond-mat/0108103E-print math-ph/0110011E-print hep-th/0201134E-print math-ph/0204002E-print cond-mat/0205467 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | MR | DOI | MR | Zbl | DOI | MR | MR | DOI | MR | DOI

[8] Yu. G. Stroganov, “The 8-vertex model with a special value of the crossing parameter and the related $XYZ$ spin chain”, Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory, eds. S. Pakuliak, G. von Gehlen, Kluwer, Amsterdam, 2001, 315–319 | DOI | MR | Zbl

[9] F. C. Alcaraz, Yu. G. Stroganov, J. Phys. A, 35 (2002), 3805–3820 ; ; 35, 2002 ; ; 36, 2003 ; E-print cond-mat/0201354E-print cond-mat/0205567E-print cond-mat/0212475 | DOI | MR | DOI | MR | DOI | MR | Zbl

[10] J. H. H. Perk, C. L. Schultz, Phys. Lett. A, 84 (1981), 407–410 ; C. L. Schultz, Physica A, 122 (1983), 71–88 | DOI | MR | DOI | MR

[11] B. Sutherland, Phys. Rev. B, 12 (1975), 3795–3805 | DOI

[12] N. Y. Reshetikhin, P. B. Wiegmann, Phys. Lett. B, 189 (1987), 125–131 ; H. J. de Vega, Int. J. Mod. Phys. A, 4 (1989), 2371–2463 | DOI | MR | DOI | MR | Zbl

[13] L. Mezincescu, R. I. Nepomechie, P. K. Towsend, A. M. Tsvelick, Nucl. Phys. B, 406 (1993), 681–707 | DOI | MR | Zbl

[14] H. J. de Vega, A. Gonzáles-Ruiz, Nucl. Phys. B, 417 (1994), 553–578 | DOI | MR | Zbl

[15] Yu. G. Stroganov, A new way to deal with Izergin–Korepin determinant at root of unity, E-print math-ph/0204042