Higher-Dimensional Representations of the Reflection Equation Algebra
Teoretičeskaâ i matematičeskaâ fizika, Tome 139 (2004) no. 1, pp. 45-61
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a new method for constructing finite-dimensional irreducible representations of the reflection equation algebra. We construct a series of irreducible representations parameterized by Young diagrams. We calculate the spectra of central elements $s_k=\operatorname{Tr}_qL^k$ of the reflection equation algebra on $q$-symmetric and $q$-antisymmetric representations. We propose a rule for decomposing the tensor product of representations into irreducible representations.
Keywords:
reflection equation algebra, Hecke algebra, representations.
@article{TMF_2004_139_1_a3,
author = {D. I. Gurevich and P. A. Saponov},
title = {Higher-Dimensional {Representations} of the {Reflection} {Equation} {Algebra}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {45--61},
publisher = {mathdoc},
volume = {139},
number = {1},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2004_139_1_a3/}
}
TY - JOUR AU - D. I. Gurevich AU - P. A. Saponov TI - Higher-Dimensional Representations of the Reflection Equation Algebra JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2004 SP - 45 EP - 61 VL - 139 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2004_139_1_a3/ LA - ru ID - TMF_2004_139_1_a3 ER -
D. I. Gurevich; P. A. Saponov. Higher-Dimensional Representations of the Reflection Equation Algebra. Teoretičeskaâ i matematičeskaâ fizika, Tome 139 (2004) no. 1, pp. 45-61. http://geodesic.mathdoc.fr/item/TMF_2004_139_1_a3/