Higher-Dimensional Representations of the Reflection Equation Algebra
Teoretičeskaâ i matematičeskaâ fizika, Tome 139 (2004) no. 1, pp. 45-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a new method for constructing finite-dimensional irreducible representations of the reflection equation algebra. We construct a series of irreducible representations parameterized by Young diagrams. We calculate the spectra of central elements $s_k=\operatorname{Tr}_qL^k$ of the reflection equation algebra on $q$-symmetric and $q$-antisymmetric representations. We propose a rule for decomposing the tensor product of representations into irreducible representations.
Keywords: reflection equation algebra, Hecke algebra, representations.
@article{TMF_2004_139_1_a3,
     author = {D. I. Gurevich and P. A. Saponov},
     title = {Higher-Dimensional {Representations} of the {Reflection} {Equation} {Algebra}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {45--61},
     year = {2004},
     volume = {139},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_139_1_a3/}
}
TY  - JOUR
AU  - D. I. Gurevich
AU  - P. A. Saponov
TI  - Higher-Dimensional Representations of the Reflection Equation Algebra
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 45
EP  - 61
VL  - 139
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_139_1_a3/
LA  - ru
ID  - TMF_2004_139_1_a3
ER  - 
%0 Journal Article
%A D. I. Gurevich
%A P. A. Saponov
%T Higher-Dimensional Representations of the Reflection Equation Algebra
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 45-61
%V 139
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2004_139_1_a3/
%G ru
%F TMF_2004_139_1_a3
D. I. Gurevich; P. A. Saponov. Higher-Dimensional Representations of the Reflection Equation Algebra. Teoretičeskaâ i matematičeskaâ fizika, Tome 139 (2004) no. 1, pp. 45-61. http://geodesic.mathdoc.fr/item/TMF_2004_139_1_a3/

[1] I. V. Cherednik, TMF, 61 (1984), 35–44 | MR | Zbl

[2] P. Schupp, P. Watts, B. Zumino, Lett. Math. Phys., 25 (1992), 139–147 ; B. Zumino, Introduction to the differential geometry of quantum groups, Preprint UCB-PTH-62/91, Univ. of California, 1991 ; A. P. Isaev, P. Pyatov, Phys. Lett. A, 179 (1993), 81–90 | DOI | MR | Zbl | MR | DOI | MR

[3] J. Donin, A. Mudrov, Lett. Math. Phys., 62 (2002), 17–32 | DOI | MR | Zbl

[4] D. Gurevich, P. Saponov, J. Phys. A, 35 (2002), 9629–9643 ; 34 (2001), 4553–4569 | DOI | MR | Zbl | DOI | MR | Zbl

[5] N. Yu. Reshetikhin, L. A. Takhtadzhyan, L. D. Faddeev, Algebra i analiz, 1:1 (1989), 178–206 | MR

[6] O. Ogievetsky, P. Pyatov, “Lecture on Hecke algebras”, Symmetries and Integrable Systems, ed. S. Z. Pakuliak, JINR, Dubna, 2000, 39–88

[7] A. Gyoja, Osaka J. Math., 23 (1986), 841–852 ; R. Dipper, G. James, Proc. London Math. Soc., 54 (1987), 57–82 ; G. E. Murphy, J. Algebra, 152 (1992), 492–513 | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[8] D. I. Gurevich, Algebra i analiz, 2:4 (1990), 119–148 | MR | Zbl

[9] P. P. Kulish, R. Sasaki, C. Schwiebert, J. Math. Phys., 34 (1993), 286–304 | DOI | MR | Zbl

[10] P. P. Kulish, E. K. Sklyanin, J. Phys. A, 25 (1992), 5963–5976 ; P. P. Kulish, R. Sasaki, Progr. Theor. Phys., 89 (1993), 741–761 | DOI | MR | DOI | MR

[11] J. Donin, P. P. Kulish, A. I. Mudrov, On universal solution to reflection equation, E-print math.QA/0210242 | MR

[12] A. A. Belavin, V. G. Drinfeld, Funkts. analiz i ego prilozh., 16:3 (1982), 1–29 | MR | Zbl

[13] P. P. Kulish, Algebra i analiz, 6:2 (1994), 195–205 | MR | Zbl

[14] D. Gurevich, R. Leclercq, P. Saponov, J. Geom. Phys., 44 (2002), 251–278 | DOI | MR | Zbl

[15] D. Gurevich, R. Leclercq, P. Saponov, $q$-Index on braided non-commutative spheres, E-print math.QA/0207268 | MR