Space of Hermitian Triples and Ashtekar–Isham Quantization
Teoretičeskaâ i matematičeskaâ fizika, Tome 139 (2004) no. 1, pp. 145-157
Cet article a éte moissonné depuis la source Math-Net.Ru
We generalize the Ashtekar–Isham construction for quantizing gauge fields to the case where the configuration variables belong to the space of Hermitian triples, not Hermitian connections.
Keywords:
Hermitian connection, Ashtekar–Isham construction, space of Hermitian triples.
@article{TMF_2004_139_1_a10,
author = {N. A. Tyurin},
title = {Space of {Hermitian} {Triples} and {Ashtekar{\textendash}Isham} {Quantization}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {145--157},
year = {2004},
volume = {139},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2004_139_1_a10/}
}
N. A. Tyurin. Space of Hermitian Triples and Ashtekar–Isham Quantization. Teoretičeskaâ i matematičeskaâ fizika, Tome 139 (2004) no. 1, pp. 145-157. http://geodesic.mathdoc.fr/item/TMF_2004_139_1_a10/
[1] N. A. Tyurin, Izv. RAN. Ser. matem., 65:1 (2001), 198–224 | MR
[2] N. A. Tyurin, Izv. RAN. Ser. matem., 66:4 (2002), 1–20 | DOI | MR
[3] T. Thiemann, Introduction to modern canonical quantum general relativity, E-print gr-qc/0110034 | MR
[4] A. Ashtekar, Quantum mechanics of geometry, E-print gr-qc/9901023
[5] S. Hawking, G. F. R. Ellis, The Large Scale Structure of Space-time, Cambridge Univ. Press, Cambridge, 1973 | MR | Zbl
[6] D. Fursaev, Nucl. Phys. B, 104 (2002), 33–62 | DOI | MR
[7] A. Ashtekar, J. Lewandowski, “Representation theory of analytic holonomy $C^*$-algebras”, Knots and Quantum Gravity, ed. J. Baez, Oxford Univ. Press, Oxford, 1994, 21–61 | MR | Zbl