Space of Hermitian Triples and Ashtekar–Isham Quantization
Teoretičeskaâ i matematičeskaâ fizika, Tome 139 (2004) no. 1, pp. 145-157 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We generalize the Ashtekar–Isham construction for quantizing gauge fields to the case where the configuration variables belong to the space of Hermitian triples, not Hermitian connections.
Keywords: Hermitian connection, Ashtekar–Isham construction, space of Hermitian triples.
@article{TMF_2004_139_1_a10,
     author = {N. A. Tyurin},
     title = {Space of {Hermitian} {Triples} and {Ashtekar{\textendash}Isham} {Quantization}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {145--157},
     year = {2004},
     volume = {139},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_139_1_a10/}
}
TY  - JOUR
AU  - N. A. Tyurin
TI  - Space of Hermitian Triples and Ashtekar–Isham Quantization
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 145
EP  - 157
VL  - 139
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_139_1_a10/
LA  - ru
ID  - TMF_2004_139_1_a10
ER  - 
%0 Journal Article
%A N. A. Tyurin
%T Space of Hermitian Triples and Ashtekar–Isham Quantization
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 145-157
%V 139
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2004_139_1_a10/
%G ru
%F TMF_2004_139_1_a10
N. A. Tyurin. Space of Hermitian Triples and Ashtekar–Isham Quantization. Teoretičeskaâ i matematičeskaâ fizika, Tome 139 (2004) no. 1, pp. 145-157. http://geodesic.mathdoc.fr/item/TMF_2004_139_1_a10/

[1] N. A. Tyurin, Izv. RAN. Ser. matem., 65:1 (2001), 198–224 | MR

[2] N. A. Tyurin, Izv. RAN. Ser. matem., 66:4 (2002), 1–20 | DOI | MR

[3] T. Thiemann, Introduction to modern canonical quantum general relativity, E-print gr-qc/0110034 | MR

[4] A. Ashtekar, Quantum mechanics of geometry, E-print gr-qc/9901023

[5] S. Hawking, G. F. R. Ellis, The Large Scale Structure of Space-time, Cambridge Univ. Press, Cambridge, 1973 | MR | Zbl

[6] D. Fursaev, Nucl. Phys. B, 104 (2002), 33–62 | DOI | MR

[7] A. Ashtekar, J. Lewandowski, “Representation theory of analytic holonomy $C^*$-algebras”, Knots and Quantum Gravity, ed. J. Baez, Oxford Univ. Press, Oxford, 1994, 21–61 | MR | Zbl

[8] N. A. Tyurin, UMN, 57:2 (2002), 83–138 | DOI | MR