The $n$-Wave Procedure and Dimensional Regularization for the Scalar Field in a Homogeneous Isotropic Space
Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 3, pp. 453-467
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain expressions for the vacuum expectations of the energy–momentum tensor of the scalar field with an arbitrary coupling to the curvature in an $N$-dimensional homogeneous isotropic space for the vacuum determined by diagonalization of the Hamiltonian. We generalize the $n$-wave procedure to $N$-dimensional homogeneous isotropic space–time. Using the dimensional regularization, we investigate the geometric structure of the terms subtracted from the vacuum energy–momentum tensor in accordance with the $n$-wave procedure. We show that the geometric structures of the first three subtractions in the $n$-wave procedure and in the effective action method coincide. We show that all the subtractions in the $n$-wave procedure in a four- and five-dimensional homogeneous isotropic space correspond to a renormalization of the coupling constants of the bare gravitational Lagrangian.
Keywords: scalar field, quantum theory in curved space, renormalization, dimensional regularization.
@article{TMF_2004_138_3_a7,
     author = {Yu. V. Pavlov},
     title = {The $n${-Wave} {Procedure} and {Dimensional} {Regularization} for the {Scalar} {Field} in {a~Homogeneous} {Isotropic} {Space}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {453--467},
     year = {2004},
     volume = {138},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_138_3_a7/}
}
TY  - JOUR
AU  - Yu. V. Pavlov
TI  - The $n$-Wave Procedure and Dimensional Regularization for the Scalar Field in a Homogeneous Isotropic Space
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 453
EP  - 467
VL  - 138
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_138_3_a7/
LA  - ru
ID  - TMF_2004_138_3_a7
ER  - 
%0 Journal Article
%A Yu. V. Pavlov
%T The $n$-Wave Procedure and Dimensional Regularization for the Scalar Field in a Homogeneous Isotropic Space
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 453-467
%V 138
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2004_138_3_a7/
%G ru
%F TMF_2004_138_3_a7
Yu. V. Pavlov. The $n$-Wave Procedure and Dimensional Regularization for the Scalar Field in a Homogeneous Isotropic Space. Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 3, pp. 453-467. http://geodesic.mathdoc.fr/item/TMF_2004_138_3_a7/

[1] A. A. Grib, S. G. Mamaev, V. M. Mostepanenko, Vakuumnye kvantovye effekty v silnykh polyakh, Energoatomizdat, M., 1988

[2] N. Birell, P. Devis, Kvantovannye polya v iskrivlennom prostranstve-vremeni, Mir, M., 1984 | MR

[3] A. A. Grib, Yu. V. Pavlov, Int. J. Mod. Phys. D, 11 (2002), 433 | DOI

[4] L. Parker, A. Raval, Phys. Rev. D, 60 (1999), 063512 ; Phys. Rev. Lett., 86 (2001), 749 | DOI | DOI | MR

[5] Ya. B. Zeldovich, A. A. Starobinskii, ZhETF, 61 (1971), 2161

[6] L. Parker, S. A. Fulling, Phys. Rev. D, 9 (1974), 341 | DOI

[7] M. Bordag, J. Lindig, V. M. Mostepanenko, Class. Q Grav., 15 (1998), 581 | DOI | MR | Zbl

[8] S. Habib, C. Molina-París, E. Mottola, Phys. Rev. D, 61 (2000), 024010 | DOI | MR

[9] T. S. Bunch, J. Phys. A, 13 (1980), 1297 | DOI | MR

[10] S. G. Mamaev, V. M. Mostepanenko, V. A. Shelyuto, TMF, 63:1 (1985), 64 | MR

[11] Yu. V. Pavlov, TMF, 128:2 (2001), 236 | DOI | Zbl

[12] N. A. Chernikov, E. A. Tagirov, Ann. Inst. H. Poincaré A, 9 (1968), 109 | MR | Zbl

[13] T. S. Bunch, J. Phys. A, 12 (1979), 517 | DOI | MR

[14] G. 't Hooft, M. Veltman, Nucl. Phys. B, 44 (1972), 189 | DOI | MR

[15] B. S. de Vitt, Dinamicheskaya teoriya grupp i polei, Nauka, M., 1987 | MR

[16] V. L. Ginzburg, D. A. Kirzhnits, A. A. Lyubushin, ZhETF, 60 (1971), 451

[17] S. G. Mamaev, V. M. Mostepanenko, A. A. Starobinskii, ZhETF, 70 (1976), 1577

[18] Yu. V. Pavlov, TMF, 126:1 (2001), 115 | DOI | MR | Zbl

[19] B. S. Dewitt, Phys. Rep. C, 19 (1975), 295 ; В. С. де Витт, “Квантовая теория поля в искривленном пространстве-времени”, Черные дыры, Мир, М., 1978, 66 | DOI

[20] M. A. Shubin, Psevdodifferentsialnye operatory i spektralnaya teoriya, Nauka, M., 1978 | MR