Finite-Dimensional Discrete Systems Integrated in Quadratures
Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 3, pp. 422-436 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider finite-dimensional reductions (truncations) of discrete systems of the type of the Toda chain with discrete time that retain the integrability. We show that for finite-dimensional chains, in addition to integrals of motion, we can construct a rich family of higher symmetries described by the master symmetry. We reduce the problem of integrating a finite-dimensional system to the implicit function theorem.
Keywords: integrability, truncation condition, zero-curvature equation, classical symmetry, master symmetry, integrals of motion.
@article{TMF_2004_138_3_a5,
     author = {T. G. Kazakova},
     title = {Finite-Dimensional {Discrete} {Systems} {Integrated} in {Quadratures}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {422--436},
     year = {2004},
     volume = {138},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_138_3_a5/}
}
TY  - JOUR
AU  - T. G. Kazakova
TI  - Finite-Dimensional Discrete Systems Integrated in Quadratures
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 422
EP  - 436
VL  - 138
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_138_3_a5/
LA  - ru
ID  - TMF_2004_138_3_a5
ER  - 
%0 Journal Article
%A T. G. Kazakova
%T Finite-Dimensional Discrete Systems Integrated in Quadratures
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 422-436
%V 138
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2004_138_3_a5/
%G ru
%F TMF_2004_138_3_a5
T. G. Kazakova. Finite-Dimensional Discrete Systems Integrated in Quadratures. Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 3, pp. 422-436. http://geodesic.mathdoc.fr/item/TMF_2004_138_3_a5/

[1] V. E. Adler, J. Nonlinear Math. Phys., 7:1 (2000), 34–56 | DOI | MR | Zbl

[2] Yu. B. Suris, J. Phys. A, 30 (1997), 2235–2249 | DOI | MR | Zbl

[3] R. Hirota, J. Phys. Soc. Japan, 43 (1977), 2074–2078 | DOI | MR | Zbl

[4] Yu. B. Suris, Algebra i analiz, 2:2 (1990), 141–157 | MR | Zbl

[5] I. T. Habibullin, T. G. Kazakova, J. Phys. A, 34 (2001), 10369–10376 | DOI | MR | Zbl

[6] I. T. Habibullin, A. N. Vil'danov, “Boundary conditions consistent with $L$–$A$ pairs”, Modern Group Analysis for the New Millennium, Proc. of the Intern. Conf. MOGRAN 2000 (Ufa, Russia, 27 September–3 October, 2000), eds. V. A. Baikov, R. K. Gazizov, N. M. Ibragimov, F. M. Mahomed, USATU, Ufa, 2001, 80–82

[7] E. K. Sklyanin, Funkts. analiz i ego prilozh., 21 (1987), 86–87 | MR | Zbl

[8] V. E. Adler, A. B. Shabat, R. I. Yamilov, TMF, 125:3 (2000), 355–424 | DOI | MR | Zbl

[9] V. E. Adler, I. T. Habibullin, J. Phys. A, 28 (1995), 6717–6729 | DOI | MR | Zbl

[10] B. Fuchssteiner, Progr. Theor. Phys., 70 (1983), 1508–1522 | DOI | MR | Zbl

[11] W. X. Ma, B. Fuchssteiner, Algebraic structure of discrete zero curvature equations and master symmetries of discrete evolution equations, E-print solv-int/9809009 | MR

[12] A. B. Shabat, R. I. Yamilov, Algebra i analiz, 2:2 (1990), 183–208 | MR

[13] A. P. Veselov, UMN, 46:5(281) (1991), 3–45 | MR

[14] M. V. Fedoryuk, Obyknovennye differentsialnye uravneniya, Nauka, M., 1985 | MR