Laplace Invariants of Two-Dimensional Open Toda Lattices
Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 3, pp. 401-421 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that Toda lattices with the Cartan matrices $\mathrm{A}_{n}$, $\mathrm{B}_{n}$, $\mathrm{C}_{n}$ и $\mathrm{D}_{n}$ are Liouville-type systems. For these systems of equations, we obtain explicit formulas for the invariants and generalized Laplace invariants. We show how they can be used to construct conservation laws ($x$ and $y$ integrals) and higher symmetries.
Keywords: symmetries, integrals, generalized invariants.
Mots-clés : Laplace invariants
@article{TMF_2004_138_3_a4,
     author = {A. M. Gurieva and A. V. Zhiber},
     title = {Laplace {Invariants} of {Two-Dimensional} {Open} {Toda} {Lattices}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {401--421},
     year = {2004},
     volume = {138},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_138_3_a4/}
}
TY  - JOUR
AU  - A. M. Gurieva
AU  - A. V. Zhiber
TI  - Laplace Invariants of Two-Dimensional Open Toda Lattices
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 401
EP  - 421
VL  - 138
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_138_3_a4/
LA  - ru
ID  - TMF_2004_138_3_a4
ER  - 
%0 Journal Article
%A A. M. Gurieva
%A A. V. Zhiber
%T Laplace Invariants of Two-Dimensional Open Toda Lattices
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 401-421
%V 138
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2004_138_3_a4/
%G ru
%F TMF_2004_138_3_a4
A. M. Gurieva; A. V. Zhiber. Laplace Invariants of Two-Dimensional Open Toda Lattices. Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 3, pp. 401-421. http://geodesic.mathdoc.fr/item/TMF_2004_138_3_a4/

[1] G. Darboux, Lecons sur la Theorie Generale des Surfaces et les Applications Geometriques du Calcul Infinitesimal, V. 2, Gauthier-Villars, Paris, 1915 | MR | Zbl

[2] E. Vessiot, J. Math. Pure Appl., 18:9 (1939), 1–61 ; 21:9 (1942), 1–68 | MR | Zbl

[3] M. Yu. Zvyagin, DAN SSSR, 316:1 (1991), 36–40 | MR | Zbl

[4] A. N. Leznov, V. G. Smirnov, A. B. Shabat, TMF, 51:1 (1982), 10–21 | MR | Zbl

[5] A. V. Zhiber, V. V. Sokolov, S. Ya. Startsev, Dokl. RAN, 343:6 (1995), 746–748 | MR | Zbl

[6] J. M. Anderson, N. Kamran, Duke Math. J., 87:2 (1997), 265–319 | DOI | MR | Zbl

[7] V. V. Sokolov, A. V. Zhiber, Phys. Lett. A, 208 (1995), 303–308 | DOI | MR | Zbl

[8] E. Goursat, Lecons sur Integration des Equation aux Derivees Partielles du Second Ordre a Deux Variable Independantes, Tome I, 1896; Tome II, Hermann, Paris, 1898 | Zbl

[9] A. V. Zhiber, V. V. Sokolov, UMN, 56:1 (2001), 63–106 | DOI | MR | Zbl

[10] J. M. Anderson, M. Juras, Duke Math. J., 89:2 (1997), 351–375 | DOI | MR | Zbl

[11] S. P. Tsarev, TMF, 122:1 (2000), 144–160 | DOI | MR | Zbl

[12] S. Ya. Startsev, TMF, 127:1 (2001), 63–74 | DOI | MR | Zbl

[13] E. V. Ferapontov, TMF, 110:1 (1997), 86–97 | DOI | MR | Zbl

[14] V. E. Adler, S. Ya. Startsev, TMF, 121:2 (1999), 271–284 | DOI | MR | Zbl

[15] A. M. Gizzatkulova, A. V. Zhiber, “Sistemy uravnenii Eilera–Puassona s nulevymi obobschennymi invariantami Laplasa”, Matematicheskie modeli i metody ikh issledovaniya, Trudy mezhdunarodnoi konferentsii. T. 1 (Krasnoyarsk, 16–21 avgusta 2001 g.), eds. V. K. Andreev, A. V. Shanko, Institut vychislitelnogo modelirovaniya SO RAN, Krasnoyarsk, 2001, 169–175

[16] A. N. Leznov, M. V. Savelev, Gruppovye metody integrirovaniya nelineinykh dinamicheskikh sistem, Nauka, M., 1985 | MR | Zbl

[17] A. B. Shabat, R. I. Yamilov, Eksponentsialnye sistemy tipa I i matritsy Kartana, Preprint No 1, Bashkirskii filial AN SSSR, Ufa, 1981

[18] A. B. Shabat, Phys. Lett. A, 200 (1995), 121–133 | DOI | MR | Zbl

[19] N. Burbaki, Gruppy i algebry Li, Mir, M., 1972 | MR | Zbl

[20] A. V. Zhiber, S. Ya. Startsev, “Ob usloviyakh suschestvovaniya preobrazovaniya Laplasa dlya lineinoi giperbolicheskoi sistemy uravnenii”, Simmetriya i differentsialnye uravneniya, Trudy III mezhdunarodnoi konferentsii (Krasnoyarsk, 25–29 avgusta 2002 g.), ed. V. K. Andreev, Institut vychislitelnogo modelirovaniya SO RAN, Krasnoyarsk, 2002, 96–101