Combinatorial Nature of the Ground-State Vector of the $O(1)$ Loop Model
Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 3, pp. 395-400 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Studying a possible connection between the ground-state vector for some special spin systems and the so-called alternating-sign matrices, we find numerical evidence that the components of the ground-state vector of the $O(1)$ loop model coincide with the numbers of the states of the so-called fully packed loop model with fixed pairing patterns. The states of the latter system are in one-to-one correspondence with alternating-sign matrices. This allows advancing the hypothesis that the components of the ground-state vector of the $O(1)$ loop model coincide with the cardinalities of the corresponding subsets of the alternating-sign matrices. In a sense, our conjecture generalizes the conjecture of Bosley and Fidkowski, which was refined by Cohn and Propp and proved by Wieland.
Keywords: loop model, ground state, fully packed loop model.
@article{TMF_2004_138_3_a3,
     author = {A. V. Razumov and Yu. G. Stroganov},
     title = {Combinatorial {Nature} of the {Ground-State} {Vector} of the $O(1)$ {Loop} {Model}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {395--400},
     year = {2004},
     volume = {138},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_138_3_a3/}
}
TY  - JOUR
AU  - A. V. Razumov
AU  - Yu. G. Stroganov
TI  - Combinatorial Nature of the Ground-State Vector of the $O(1)$ Loop Model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 395
EP  - 400
VL  - 138
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_138_3_a3/
LA  - ru
ID  - TMF_2004_138_3_a3
ER  - 
%0 Journal Article
%A A. V. Razumov
%A Yu. G. Stroganov
%T Combinatorial Nature of the Ground-State Vector of the $O(1)$ Loop Model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 395-400
%V 138
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2004_138_3_a3/
%G ru
%F TMF_2004_138_3_a3
A. V. Razumov; Yu. G. Stroganov. Combinatorial Nature of the Ground-State Vector of the $O(1)$ Loop Model. Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 3, pp. 395-400. http://geodesic.mathdoc.fr/item/TMF_2004_138_3_a3/

[1] A. V. Razumov, Yu. G. Stroganov, J. Phys. A, 34:14 (2001), 3185–3190 ; E-print cond-mat/0012141 | DOI | MR | Zbl

[2] M. T. Batchelor, J. de Gier, B. Nienhuis, J. Phys. A, 34 (2001), L265–L270 ; E-print cond-mat/0101385 | DOI | MR | Zbl

[3] A. V. Razumov, Yu. G. Stroganov, J. Phys. A, 34 (2001), 5335–5340 ; E-print cond-mat/0102247 | DOI | MR | Zbl

[4] H. W. J. Blöte, B. Nienhuis, J. Phys. A, 22 (1989), 1415–1438 | DOI | MR

[5] V. E. Korepin, A. G. Izergin, N. M. Bogoliubov, Quantum Inverse Scattering Method, Correlation Functions, and Algebraic Bethe Ansatz, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl

[6] R. Bekster, Tochno reshaemye modeli v statisticheskoi mekhanike, Mir, M., 1985 | MR

[7] J. Propp, “The many faces of alternating-sign matrices”, Discrete Models: Combinatorics, computation, and geometry. Discrete Math. Theor. Comput. Sci., Proc. AA. Maison Inform. Math. Discrét, Paris, 2001, 43–58 | MR | Zbl

[8] B. Wieland, Electron. J. Combin., 7:1 (2000), R37 ; www.combinatorics.org | MR | Zbl

[9] P. Lankaster, Teoriya matrits, Nauka, M., 1978 | MR