$p$-Adic Pseudodifferential Operators and $p$-Adic Wavelets
Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 3, pp. 383-394

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a new wide class of $p$-adic pseudodifferential operators. We show that the basis of $p$-adic wavelets is the basis of eigenvectors for the introduced operators.
Mots-clés : $p$-adic diffusion.
@article{TMF_2004_138_3_a2,
     author = {S. V. Kozyrev},
     title = {$p${-Adic} {Pseudodifferential} {Operators} and $p${-Adic} {Wavelets}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {383--394},
     publisher = {mathdoc},
     volume = {138},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_138_3_a2/}
}
TY  - JOUR
AU  - S. V. Kozyrev
TI  - $p$-Adic Pseudodifferential Operators and $p$-Adic Wavelets
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 383
EP  - 394
VL  - 138
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_138_3_a2/
LA  - ru
ID  - TMF_2004_138_3_a2
ER  - 
%0 Journal Article
%A S. V. Kozyrev
%T $p$-Adic Pseudodifferential Operators and $p$-Adic Wavelets
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 383-394
%V 138
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2004_138_3_a2/
%G ru
%F TMF_2004_138_3_a2
S. V. Kozyrev. $p$-Adic Pseudodifferential Operators and $p$-Adic Wavelets. Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 3, pp. 383-394. http://geodesic.mathdoc.fr/item/TMF_2004_138_3_a2/