Probability Interpretation of the Integral of Fractional Order
Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 3, pp. 491-507 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We establish a relation between stable distributions in probability theory and the fractional integral. Moreover, it turns out that the parameter of the stable distribution coincides with the exponent of the fractional integral. It follows from an analysis of the obtained results that equations with the fractional time derivative describe the evolution of some physical system whose time degree of freedom becomes stochastic, i.e. presents a sum of random time intervals subject to a stable probability distribution. We discuss relations between the fractal Cantor set (Cantor strips) and the fractional integral. We show that the possibility to use this relation as an approximation of the fractional integral is rather limited.
Keywords: integral of fractional order, stable probability distributions
Mots-clés : Fokker–Planck.
@article{TMF_2004_138_3_a10,
     author = {A. A. Stanislavskii},
     title = {Probability {Interpretation} of the {Integral} of {Fractional} {Order}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {491--507},
     year = {2004},
     volume = {138},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_138_3_a10/}
}
TY  - JOUR
AU  - A. A. Stanislavskii
TI  - Probability Interpretation of the Integral of Fractional Order
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 491
EP  - 507
VL  - 138
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_138_3_a10/
LA  - ru
ID  - TMF_2004_138_3_a10
ER  - 
%0 Journal Article
%A A. A. Stanislavskii
%T Probability Interpretation of the Integral of Fractional Order
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 491-507
%V 138
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2004_138_3_a10/
%G ru
%F TMF_2004_138_3_a10
A. A. Stanislavskii. Probability Interpretation of the Integral of Fractional Order. Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 3, pp. 491-507. http://geodesic.mathdoc.fr/item/TMF_2004_138_3_a10/

[1] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR | Zbl

[2] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993 | MR

[3] R. R. Nigmatullin, Ya. E. Ryabov, FTT, 39:1 (1997), 101

[4] K. Weron, A. Klauser, Ferroelectrics, 236 (2000), 59 | DOI

[5] M. F. Shlesinger, G. M. Zaslavsky, J. Klafter, Nature, 363 (1993), 31 | DOI

[6] R. Metzler, E. Barkai, J. Klafter, Phys. Rev. Lett., 82 (1999), 3563 | DOI

[7] R. Metzler, J. Klafter, Phys. Rep., 339 (2000), 1 | DOI | MR | Zbl

[8] G. M. Zaslavsky, Physica D, 76 (1994), 110 | DOI | MR | Zbl

[9] A. I. Saichev, G. M. Zaslavsky, Chaos, 7 (1997), 753 | DOI | MR | Zbl

[10] B. Ross (ed.), Fractional Calculus and Its Applications, Lect. Notes in Math., 457, Springer, New York, 1975 | DOI | MR | Zbl

[11] A. McBride, G. Roach (eds.), Fractional Calculus, Research Notes in Math., 138, Pitman, Boston–London–Melbourne, 1985 | MR | Zbl

[12] K. Nishimoto (ed.), Fractional Calculus and Its Applications, Hihon University, Koriyama, 1990

[13] P. Rusev, I. Dimovski, V. Kiryakova (eds.), Transform Methods and Special Functions, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, 1998

[14] B. Mandelbrot, Fractal Geometry of Nature, Freeman, San-Francisco, 1983 | MR

[15] L. Petronero, E. Tozatti (red.), Fraktaly v fizike, Trudy VI Mezhd. simpoziuma po fraktalam v fizike (Triest, Italiya, 9–12 iyulya 1985 g.), Mir, M., 1988

[16] R. R. Nigmatullin, TMF, 90:3 (1992), 354 | MR | Zbl

[17] A. Le Mehaute, R. R. Nigmatullin, L. Nivanen, Fleches du Temps et Geometric Fractale, Hermes, Paris, 1998 | MR | Zbl

[18] A. I. Olemskoi, A. Ya. Flat, UFN, 163:12 (1993), 1 ; Sh. Fu, Real Anal. Exchange, 21(1) (1995), 308 ; F. Y. Ren, Z. G. Yu, F. Su, Phys. Lett. A, 219 (1996), 59 ; Z. G. Yu, F. Y. Ren, J. Phys. A, 30 (1997), 5559; F. Y. Ren et al., Physica A, 246 (1997), 419 ; F. Y. Ren, Z. G. Yu, Progr. Natur. Sci., 7 (1997), 422 ; M. Monsrefi-Torbati, J. K. Hammond, J. Franklin Inst. B, 335:6 (1998), 1077 ; F. Y. Ren, J. R. Liang, X. T. Wang, Phys. Lett. A, 252 (1999), 141 ; Z. G. Yu, Phys. Lett. A, 257 (1999), 221 ; A. I. Olemskoi, V. F. Klepikov, Phys. Rep., 338 (2000), 571 | DOI | MR | DOI | MR | Zbl | DOI | Zbl | DOI | MR | DOI | MR | DOI | DOI | MR | Zbl

[19] R. S. Rutman, TMF, 100:3 (1994), 476 ; 105:3 (1995), 393 | MR | Zbl | MR | Zbl

[20] A. A. Stanislavsky, K. Weron, Physica A, 303:1–2 (2002), 57 | DOI | MR | Zbl

[21] E. W. Montroll, G. H. Weiss, J. Math. Phys., 6 (1965), 167 | DOI | MR | Zbl

[22] H. Scher, E. W. Montroll, Phys. Rev. B, 12 (1975), 245 ; M. F. Shlesinger, B. D. Hughes, Physica A, 109 (1981), 597 ; M. F. Shlesinger, J. Stat. Phys., 36 (1984), 639 ; H. Weissman, G. H. Weiss, S. Havlin, J. Stat. Phys., 57 (1989), 301 ; J. Klafter, G. Zumofen, J. Phys. Chem., 98 (1994), 7366 | DOI | DOI | MR | DOI | MR | Zbl | DOI | MR | DOI

[23] V. M. Zolotarev, Odnomernye ustoichivye raspredeleniya, Nauka, M., 1983 | MR

[24] N. H. Bingham, Z. Wahrscheinlichkeitstheorie verw. Geb., 17 (1971), 1 | DOI | MR | Zbl

[25] M. M. Meerschaert, H. Scheffler, Limit theorems for continuous time random walks, , 2001 http://unr.edu/homepage/mcubed/LimitCTRW.pdf

[26] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, Mir, M., 1984 | MR

[27] F. Mainardi, Chaos, Solitons and Fractals, 7 (1996), 1461 | DOI | MR | Zbl

[28] H. C. Fogedby, Phys. Rev. E, 50 (1994), 1657 | DOI

[29] H. C. Fogedby, Phys. Rev. E, 58 (1998), 1690 | DOI | MR

[30] A. A. Stanislavsky, Phys. Rev. E, 61 (2000), 4752 | DOI

[31] I. M. Sokolov, Phys. Rev. E, 63 (2001), 056111 | DOI

[32] P. Becker-Kern, M. M. Meerschaert, H. Scheffler, Limit theorems for coupled continuous time random walks, , 2001 http://unr.edu/homepage/mcubed/CoupleCTRW.pdf | Zbl

[33] E. Barkai, R. J. Silbey, J. Phys. Chem. B, 104 (2000), 3866 ; I. M. Sokolov, J. Klafter, A. Blumen, Phys. Rev. E, 64 (2001), 021107 | DOI | DOI

[34] N. G. van Kampen, Stokhasticheskie protsessy v fizike i khimii, Vysshaya shkola, M., 1990

[35] G. Repke, Neravnovesnaya statisticheskaya mekhanika, Mir, M., 1990 | MR

[36] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, T. 3, Nauka, M., 1967 | MR

[37] W. G. Glöckle, T. F. Nonnenmacher, Macromolecules, 24 (1991), 6426 | DOI | MR

[38] M. A. Lavrentev, B. V. Shabat, Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1987 | MR | Zbl

[39] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971 | MR

[40] C. Fox, Trans. Am. Math. Soc., 98 (1961), 395 | DOI | MR | Zbl