Evidence for a Phase Transition in Three-Dimensional Lattice Models
Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 3, pp. 369-382 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It was recently discovered that an eigenvector structure of commutative families of layer-to-layer matrices in three-dimensional lattice models is described by a two-dimensional spin lattice generalizing the notion of one-dimensional spin chains. We conjecture the relations between the two-dimensional spin lattice in the thermodynamic limit and the phase structure of three-dimensional lattice models. We consider two simplest cases: the homogeneous spin lattice related to the Zamolodchikov–Bazhanov–Baxter model and a “chess spin lattice” related to the Stroganov–Mangazeev elliptic solution of the modified tetrahedron equation. Evidence for the phase transition is obtained in the second case.
Keywords: three,dimensional integrable models, Zamolodchikov–Bazhanov–Baxter model.
@article{TMF_2004_138_3_a1,
     author = {S. M. Sergeev},
     title = {Evidence for {a~Phase} {Transition} in {Three-Dimensional} {Lattice} {Models}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {369--382},
     year = {2004},
     volume = {138},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_138_3_a1/}
}
TY  - JOUR
AU  - S. M. Sergeev
TI  - Evidence for a Phase Transition in Three-Dimensional Lattice Models
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 369
EP  - 382
VL  - 138
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_138_3_a1/
LA  - ru
ID  - TMF_2004_138_3_a1
ER  - 
%0 Journal Article
%A S. M. Sergeev
%T Evidence for a Phase Transition in Three-Dimensional Lattice Models
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 369-382
%V 138
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2004_138_3_a1/
%G ru
%F TMF_2004_138_3_a1
S. M. Sergeev. Evidence for a Phase Transition in Three-Dimensional Lattice Models. Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 3, pp. 369-382. http://geodesic.mathdoc.fr/item/TMF_2004_138_3_a1/

[1] A. B. Zamolodchikov, ZhETF, 79 (1980), 641–664 ; A. B. Zamolodchikov, Commun. Math. Phys., 79 (1981), 489–505 | MR | DOI | MR

[2] R. J. Baxter, Commun. Math. Phys., 88 (1983), 185–205 ; Phys. Rev. Lett., 53 (1984), 1795–1798 ; Physica D, 18 (1986), 321–347 | DOI | MR | DOI | MR | DOI | MR | Zbl

[3] V. V. Bazhanov, R. J. Baxter, J. Stat. Phys., 69 (1992), 453–485 | DOI | MR | Zbl

[4] S. M. Sergeev, V. V. Mangazeev, Yu. G. Stroganov, J. Stat. Phys., 82 (1996), 31–50 | DOI | MR

[5] R. J. Baxter, P. J. Forrester, J. Phys. A, 18 (1985), 1483–1497 | DOI | MR

[6] V. V. Mangazeev, Yu. G. Stroganov, Mod. Phys. Lett. A, 8 (1993), 3475–3482 ; V. V. Mangazeev, S. M. Sergeev, Yu. G. Stroganov, Int. J. Mod. Phys. A, 9 (1994), 5517–5530 ; H. E. Boos, V. V. Mangazeev, S. M. Sergeev, Yu. G. Stroganov, Int. J. Mod. Phys. A, 10 (1995), 4041–4064 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR

[7] S. Sergeev, J. Phys. A, 32 (1999), 5693–5714 ; С. М. Сергеев, ТМФ, 124:3 (2000), 391–409 ; Зап. научн. семин. ПОМИ, 269, 2000, 292–307 | DOI | MR | Zbl | DOI | MR | Zbl | Zbl

[8] S. Z. Pakulyak, S. M. Sergeev, TMF, 136:1 (2003), 30–51 ; E-print nlin.SI/0209019 | DOI | MR

[9] G. von Gehlen, S. Pakuliak, S. Sergeev, J. Phys. A, 36 (2003), 975–998 ; E-print nlin.SI/0208035 | DOI | MR | Zbl

[10] S. M. Sergeev, TMF, 138:2 (2004), 269–282 | DOI | MR | Zbl

[11] Ch. Fan, F. Y. Wu, Phys. Rev. B, 2 (1970), 723–733 | DOI

[12] E. T. Uitteker, Dzh. N. Vatson, Kurs sovremennogo analiza, Fizmatgiz, M., 1962