Keywords: compatible metrics, inverse scattering transform, orthogonal curvilinear coordinate systems, integrable systems.
@article{TMF_2004_138_2_a6,
author = {O. I. Mokhov},
title = {Lax {Pairs} for {Equations} {Describing} {Compatible} {Nonlocal} {Poisson} {Brackets} of {Hydrodynamic} {Type} and {Integrable} {Reductions} of the {Lam{\cyrishrt}} {Equations}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {283--296},
year = {2004},
volume = {138},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2004_138_2_a6/}
}
TY - JOUR AU - O. I. Mokhov TI - Lax Pairs for Equations Describing Compatible Nonlocal Poisson Brackets of Hydrodynamic Type and Integrable Reductions of the Lamй Equations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2004 SP - 283 EP - 296 VL - 138 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2004_138_2_a6/ LA - ru ID - TMF_2004_138_2_a6 ER -
%0 Journal Article %A O. I. Mokhov %T Lax Pairs for Equations Describing Compatible Nonlocal Poisson Brackets of Hydrodynamic Type and Integrable Reductions of the Lamй Equations %J Teoretičeskaâ i matematičeskaâ fizika %D 2004 %P 283-296 %V 138 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2004_138_2_a6/ %G ru %F TMF_2004_138_2_a6
O. I. Mokhov. Lax Pairs for Equations Describing Compatible Nonlocal Poisson Brackets of Hydrodynamic Type and Integrable Reductions of the Lamй Equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 2, pp. 283-296. http://geodesic.mathdoc.fr/item/TMF_2004_138_2_a6/
[1] O. I. Mokhov, TMF, 132:1 (2002), 60–73 ; E-print math.DG/0201242 | DOI | MR | Zbl
[2] B. A. Dubrovin, S. P. Novikov, DAN SSSR, 270:4 (1983), 781–785 | MR | Zbl
[3] O. I. Mokhov, E. V. Ferapontov, UMN, 45:3 (1990), 191–192 | MR | Zbl
[4] E. V. Ferapontov, Funkts. analiz i ego prilozh., 25:3 (1991), 37–49 | MR | Zbl
[5] F. Magri, J. Math. Phys., 19:5 (1978), 1156–1162 | DOI | MR | Zbl
[6] O. I. Mokhov, Funkts. analiz i ego prilozh., 35:2 (2001), 24–36 ; E-print math.DG/0005051 | DOI | MR | Zbl
[7] O. I. Mokhov, UMN, 55:4 (2000), 217–218 | DOI | MR | Zbl
[8] B. Dubrovin, “Geometry of 2d topological field theories”, Integrable Systems and Quantum Groups, Lect. Notes Math., 1620, eds. M. Irancaviglia et al., 1996, 120–348 ; E-print hep-th/9407018 | DOI | MR | Zbl
[9] E. V. Ferapontov, Diff. Geometry Appl., 14 (2001), 15–37 ; E-print math.DG/9805012 | DOI | MR | Zbl
[10] L. P. Eisenhart, Transformations of surfaces, Chelsea Publishing Company, New York, 1962 | MR
[11] O. I. Mokhov, TMF, 130:2 (2002), 233–250 ; ; УМН, 56:2 (2001), 221–222 E-print math.DG/0005081 | DOI | MR | Zbl | DOI | MR | Zbl
[12] V. E. Zakharov, Duke Math. J., 94:1 (1998), 103–139 | DOI | MR | Zbl
[13] E. V. Ferapontov, J. Phys. A, 34:11 (2001), 2377–2388 ; E-print math.DG/0005221 | DOI | MR | Zbl
[14] O. I. Mokhov, Funkts. analiz i ego prilozh., 36:3 (2002), 36–47 ; ; УМН, 57:3 (2002), 155–156 E-print math.DG/0201280 | DOI | MR | Zbl | DOI | MR | Zbl