@article{TMF_2004_138_2_a5,
author = {S. M. Sergeev},
title = {Functional {Equations} and {Quantum} {Separation} of {Variables} for 3d {Spin} {Models}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {269--282},
year = {2004},
volume = {138},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2004_138_2_a5/}
}
S. M. Sergeev. Functional Equations and Quantum Separation of Variables for 3d Spin Models. Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 2, pp. 269-282. http://geodesic.mathdoc.fr/item/TMF_2004_138_2_a5/
[1] S. Sergeev, J. Phys. A, 32 (1999), 5693–5714 ; Phys. Lett. A, 265 (2000), 364–368 ; J. Nonlinear Math. Phys., 7 (2000), 57–72 ; С. М. Сергеев, ТМФ, 124 (2000), 391–409 ; Зап. научн. семин. ПОМИ, 269, 2000, 292–307 ; Вполне интегрируемые дискретные системы в трех измерениях, Автореферат дисс. ...докт. физ.-матем. наук, ПОМИ, С.-Петербург, 2001 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | Zbl
[2] A. B. Zamolodchikov, ZhETF, 79 (1980), 641–664 ; A. B. Zamolodchikov, Commun. Math. Phys., 79 (1981), 489–505 ; R. J. Baxter, Commun. Math. Phys., 88 (1983), 185–205 ; Phys. Rev. Lett., 53 (1984), 1795–1798 ; Physica D, 18 (1986), 321–347 ; V. V. Bazhanov, R. J. Baxter, J. Stat. Phys., 69 (1992), 453–485 | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl
[3] S. M. Sergeev, V. V. Mangazeev, Yu. G. Stroganov, J. Stat. Phys., 82 (1996), 31–50 | DOI | MR
[4] L. D. Faddeev, Lett. Math. Phys., 34 (1995), 249–254 ; “Modular double of quantum group”, Quantization, Deformation, and Symmetries, Conférence Moshé Flato. V. 1 (Dijon, France, September 5–8, 1999), eds. G. Dito et al., Kluwer Acad. Publ., Dordrecht, 2000, 149–156 ; ; V. V. Bazhanov, N. Yu. Reshetikhin, J. Phys. A, 28 (1995), 2217–2226 ; V. Bazhanov, A. Bobenko, N. Reshetikhin, Commun. Math. Phys., 175 (1996), 377–400 ; R. Kashaev, N. Reshetikhin, Invariants of links with flat connections in their complements. II: Holonomy $R$-matrices related to quantized universal enveloping algebras at roots of 1, E-print math.qn/9912078E-print math.AT/0202212 | DOI | MR | Zbl | MR | DOI | MR | Zbl | DOI | MR | Zbl
[5] E. K. Sklyanin, “Functional Bethe ansatz”, Integrable and Superintegrable Systems, ed. B. A. Kupershmidt, World Scientific, Teanect, NJ, 1990, 8–33 ; “Quantum Inverse Scattering Method. Selected Topics”, Quantum Group and Quantum Integrable Systems, Nankai Lectures in Mathematical Physics, ed. Mo-Lin Ge, World Scientific, Singapore, 1992, 63–97 ; Progr. Theor. Phys. (suppl.), 118 (1995), 35–60 ; F. A. Smirnov, Separation of variables for quantum integrable models related to $U_q(\widehat{sl}_N)$, E-print math-ph/0109013 | DOI | MR | MR | DOI | MR | Zbl | MR
[6] S. Pakuliak, S. Sergeev, Relativistic Toda chain at root of unity, E-print nlin.SI/0101024 | MR