Massless Elementary Particles in a Quantum Theory over a Galois Field
Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 2, pp. 246-268 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider massless elementary particles in a quantum theory based on a Galois field (GFQT). We previously showed that the theory has a new symmetry between particles and antiparticles, which has no analogue in the standard approach. We now prove that the symmetry is compatible with all operators describing massless particles. Consequently, massless elementary particles can have only half-integer spin (in conventional units), and the existence of massless neutral elementary particles is incompatible with the spin–statistics theorem. In particular, this implies that the photon and the graviton in the GFQT can only be composite particles.
Keywords: Galois fields, massless particles, modular representations.
@article{TMF_2004_138_2_a4,
     author = {F. M. Lev},
     title = {Massless {Elementary} {Particles} in a {Quantum} {Theory} over a {Galois} {Field}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {246--268},
     year = {2004},
     volume = {138},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_138_2_a4/}
}
TY  - JOUR
AU  - F. M. Lev
TI  - Massless Elementary Particles in a Quantum Theory over a Galois Field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 246
EP  - 268
VL  - 138
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_138_2_a4/
LA  - ru
ID  - TMF_2004_138_2_a4
ER  - 
%0 Journal Article
%A F. M. Lev
%T Massless Elementary Particles in a Quantum Theory over a Galois Field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 246-268
%V 138
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2004_138_2_a4/
%G ru
%F TMF_2004_138_2_a4
F. M. Lev. Massless Elementary Particles in a Quantum Theory over a Galois Field. Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 2, pp. 246-268. http://geodesic.mathdoc.fr/item/TMF_2004_138_2_a4/

[1] E. P. Wigner, Ann. Math., 40 (1939), 149 | DOI | MR | Zbl

[2] P. A. M. Dirac, “Theory of electrons and positrons”, The World Treasury of Physics, Astronomy and Mathematics, ed. T. Ferris, Little Brown, Boston–New York–London, 1991, 80

[3] F. M. Lev, YaF, 48 (1988), 903 ; F. M. Lev, J. Math. Phys., 30 (1989), 1985 ; 34 (1993), 490 | MR | DOI | MR | Zbl | DOI | MR | Zbl

[4] F. M. Lev, Problem of constructing discrete and finite quantum theory, E-print hep-th/0206078

[5] B. L. Van der Varden, Algebra, Nauka, M., 1979 ; K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory, Graduate Texts in Mathematics, 84, Springer, New York–Heidelberg–Berlin, 1982 ; H. Davenport, The Higher Arithmetic, Cambridge Univ. Press, Cambridge, 1999 | MR | DOI | MR | Zbl | MR | Zbl

[6] E. M. Friedlander, B. J. Parshall, Bull. Am. Math. Soc., 17 (1987), 129 | DOI | MR | Zbl

[7] C. Fronsdal, Rev. Mod. Phys., 37 (1965), 221 | DOI | MR | Zbl

[8] N. T. Evans, J. Math. Phys., 8 (1967), 170 | DOI | MR | Zbl

[9] B. Braden, Bull. Am. Math. Soc., 73 (1967), 482 | DOI | MR | Zbl

[10] H. Zassenhaus, Proc. Glasgow Math. Assoc., 2 (1954), 1 | DOI | MR | Zbl

[11] E. Inonu, E. P. Wigner, Nuovo Cimento, 9 (1952), 705 | DOI | MR | Zbl

[12] Yu. V. Novozhilov, Vvedenie v teoriyu elementarnykh chastits, Nauka, M., 1972 | MR

[13] S. Weinberg, Quantum Theory of Fields, Cambridge Univ. Press, Cambridge, 1995 | MR

[14] W. Pauli, Phys. Rev., 58 (1940), 116 | DOI

[15] W. Pauli, “Exclusion principle, Lorentz group and reflection of space-time and charge”, Niels Bohr and the Development of Physics, ed. W. Pauli, Pergamon, London, 1955, 30 ; G. Gravert, G. Luders, G. Rollnik, Fortschr. Phys., 7 (1959), 291 | MR | DOI | MR

[16] M. Flato, C. Fronsdal, Lett. Math. Phys., 2 (1978), 421 ; L. Castell, W. Heidenreich, Phys. Rev. D, 24 (1981), 371 ; C. Fronsdal, Phys. Rev. D, 26 (1982), 1988 | DOI | MR | DOI | MR | DOI | MR

[17] P. A. M. Dirac, J. Math. Phys., 4 (1963), 901 | DOI | MR | Zbl

[18] E. P. Wigner, “The unreasonable effectiveness of mathematics in natural sciences”, The World Treasury of Physics, Astronomy and Mathematics, ed. T. Ferris, Little Brown, Boston–New York–London, 1991, 526 | MR