Massless Elementary Particles in a Quantum Theory over a Galois Field
Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 2, pp. 246-268

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider massless elementary particles in a quantum theory based on a Galois field (GFQT). We previously showed that the theory has a new symmetry between particles and antiparticles, which has no analogue in the standard approach. We now prove that the symmetry is compatible with all operators describing massless particles. Consequently, massless elementary particles can have only half-integer spin (in conventional units), and the existence of massless neutral elementary particles is incompatible with the spin–statistics theorem. In particular, this implies that the photon and the graviton in the GFQT can only be composite particles.
Keywords: Galois fields, massless particles, modular representations.
@article{TMF_2004_138_2_a4,
     author = {F. M. Lev},
     title = {Massless {Elementary} {Particles} in a {Quantum} {Theory} over a {Galois} {Field}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {246--268},
     publisher = {mathdoc},
     volume = {138},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_138_2_a4/}
}
TY  - JOUR
AU  - F. M. Lev
TI  - Massless Elementary Particles in a Quantum Theory over a Galois Field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 246
EP  - 268
VL  - 138
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_138_2_a4/
LA  - ru
ID  - TMF_2004_138_2_a4
ER  - 
%0 Journal Article
%A F. M. Lev
%T Massless Elementary Particles in a Quantum Theory over a Galois Field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 246-268
%V 138
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2004_138_2_a4/
%G ru
%F TMF_2004_138_2_a4
F. M. Lev. Massless Elementary Particles in a Quantum Theory over a Galois Field. Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 2, pp. 246-268. http://geodesic.mathdoc.fr/item/TMF_2004_138_2_a4/