Massless Elementary Particles in a Quantum Theory over a Galois Field
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 2, pp. 246-268
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider massless elementary particles in a quantum theory based on a Galois field (GFQT). We previously showed that the theory has a new symmetry between particles and antiparticles, which has no analogue in the standard approach. We now prove that the symmetry is compatible with all operators describing massless particles. Consequently, massless elementary particles can have only half-integer spin (in conventional units), and the existence of massless neutral elementary particles is incompatible with the spin–statistics theorem. In particular, this implies that the photon and the graviton in the GFQT can only be composite particles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Galois fields, massless particles, modular representations.
                    
                  
                
                
                @article{TMF_2004_138_2_a4,
     author = {F. M. Lev},
     title = {Massless {Elementary} {Particles} in a {Quantum} {Theory} over a {Galois} {Field}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {246--268},
     publisher = {mathdoc},
     volume = {138},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_138_2_a4/}
}
                      
                      
                    F. M. Lev. Massless Elementary Particles in a Quantum Theory over a Galois Field. Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 2, pp. 246-268. http://geodesic.mathdoc.fr/item/TMF_2004_138_2_a4/
