Constructing Representations of the Nonstandardly Deformed Algebra $s\ell_\xi(2)$
Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 2, pp. 209-224 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The generators of the algebra $s\ell_\xi(2)$, which result from the nonstandard (Jordanian) deformation of the algebra $s\ell(2)$, are realized in the form of finite-difference operators acting in a function space. This allows realizing arbitrary-dimensional representations of $s\ell_\xi(2)$ in the polynomial space that are in one-to-one correspondence with usual matrices of an appropriate dimension. We discuss using the suggested realization to construct and investigate the universal $R$-matrix invariant with respect to the action of the algebra $s\ell_\xi(2)$.
@article{TMF_2004_138_2_a2,
     author = {D. R. Karakhanyan},
     title = {Constructing {Representations} of the {Nonstandardly} {Deformed} {Algebra} $s\ell_\xi(2)$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {209--224},
     year = {2004},
     volume = {138},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_138_2_a2/}
}
TY  - JOUR
AU  - D. R. Karakhanyan
TI  - Constructing Representations of the Nonstandardly Deformed Algebra $s\ell_\xi(2)$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 209
EP  - 224
VL  - 138
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_138_2_a2/
LA  - ru
ID  - TMF_2004_138_2_a2
ER  - 
%0 Journal Article
%A D. R. Karakhanyan
%T Constructing Representations of the Nonstandardly Deformed Algebra $s\ell_\xi(2)$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 209-224
%V 138
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2004_138_2_a2/
%G ru
%F TMF_2004_138_2_a2
D. R. Karakhanyan. Constructing Representations of the Nonstandardly Deformed Algebra $s\ell_\xi(2)$. Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 2, pp. 209-224. http://geodesic.mathdoc.fr/item/TMF_2004_138_2_a2/

[1] C. N. Yang, Phys. Rev. Lett., 19 (1967), 1312 | DOI | MR | Zbl

[2] R. J. Baxter, Ann. Phys., 70 (1972), 193 | DOI | MR | Zbl

[3] L. Alvarez-Gaume, C. Gomez, G. Sierra, Phys. Lett. B, 220 (1989), 142 | DOI | MR | Zbl

[4] N. Yu. Reshetikhin, V. G. Turaev, Commun. Math. Phys., 127 (1990), 1 | DOI | MR | Zbl

[5] L. D. Faddeev, N. Yu. Reshetikhin, L. A. Takhtadzhyan, Kvantovanie grupp Li i algebr Li, Preprint LOMI E-14-87; Алгебра и анализ, 1 (1989), 178 | MR

[6] V. G. Drinfel'd, “Quantum groups”, Proc. Intern. Congress of Mathematicians (MSRI, Berkeley, 1986), AMS, Providence, RI, 1987, 798 ; В. Г. Дринфельд, Зап. научн. семин. ЛОМИ, 155, 1986, 18 | MR | Zbl

[7] A. N. Kirillov, N. Yu. Reshetikhin, Universalnaya $R$-matritsa dlya deformatsii Drinfelda–Dzhimbo, Preprint LOMI-E-9-88, LOMI, L., 1988

[8] C. Ohn, Lett. Math. Phys., 25 (1992), 85 | DOI | MR | Zbl

[9] E. E. Demidov, Yu. I. Manin, E. E. Mukhin, D. V. Zdanovich, Progr. Theor. Phys. Suppl., 102 (1990), 203 | DOI | MR | Zbl

[10] A. Aghamohammadi, M. Khorrami, A. Shariati, J. Phys. A, 28 (1995), L225 | DOI | MR | Zbl

[11] P. P. Kulish, A. Stolin, New rational solutions of Yang–Baxter equation and deformed Yangians, E-print q-alg/9608011 | MR

[12] A. Ballesteros, F. J. Herranz, J. Phys. A, 29 (1996), 4307 | DOI | MR | Zbl

[13] L. N. Lipatov, Pisma v ZhETF, 59 (1994), 596; E-print hep-th/9311037

[14] S. Derkachov, D. Karakhanyan, R. Kirschner, Nucl. Phys. B, 583 (2000), 691 ; 618 (2001), 589 ; D. Karakhanyan, R. Kirschner, M. Mirumyan, Nucl. Phys. B, 636 (2002), 529 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[15] J. Van der Jeugt, The Jordanian deformation of $su(2)$ and Clebsch–Gordan coefficients, E-print q-alg/9709005 | MR

[16] L. D. Faddeev, G. P. Korchemsky, Phys. Lett. B, 342 (1995), 311 | DOI | MR

[17] V. O. Tarasov, L. A. Takhtadzhyan, L. D. Faddeev, TMF, 57 (1983), 163 | MR