One-Dimensional Topologically Nontrivial Solutions in the Skyrme Model
Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 2, pp. 193-208 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the Skyrme model using the explicit parameterization of the rotation group $\mathbb S\mathbb O(3)$ through elements of its algebra. Topologically nontrivial solutions already arise in the one-dimensional case because the fundamental group of $\mathbb S\mathbb O(3)$ is $\mathbb Z_2$. We explicitly find and analyze one-dimensional static solutions. Among them, there are topologically nontrivial solutions with finite energy. We propose a new class of projective models whose target spaces are arbitrary real projective spaces $\mathbb R\mathbb P^d$.
Keywords: topological solitons, Skyrme model.
@article{TMF_2004_138_2_a1,
     author = {M. O. Katanaev},
     title = {One-Dimensional {Topologically} {Nontrivial} {Solutions} in the {Skyrme} {Model}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {193--208},
     year = {2004},
     volume = {138},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_138_2_a1/}
}
TY  - JOUR
AU  - M. O. Katanaev
TI  - One-Dimensional Topologically Nontrivial Solutions in the Skyrme Model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 193
EP  - 208
VL  - 138
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_138_2_a1/
LA  - ru
ID  - TMF_2004_138_2_a1
ER  - 
%0 Journal Article
%A M. O. Katanaev
%T One-Dimensional Topologically Nontrivial Solutions in the Skyrme Model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 193-208
%V 138
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2004_138_2_a1/
%G ru
%F TMF_2004_138_2_a1
M. O. Katanaev. One-Dimensional Topologically Nontrivial Solutions in the Skyrme Model. Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 2, pp. 193-208. http://geodesic.mathdoc.fr/item/TMF_2004_138_2_a1/

[1] T. H. R. Skyrme, Proc. Roy. Soc. London A, 260 (1961), 127–138 | DOI | MR | Zbl

[2] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: Metod obratnoi zadachi, Nauka, M., 1980 ; Р. Раджараман, Солитоны и инстантоны в квантовой теории поля, Мир, М., 1985; Л. А. Тахтаджян, Л. Д. Фаддеев, Гамильтонов подход в теории солитонов, Наука, М., 1986 ; W. J. Zakrzewski, Low Dimensional Sigma Models, Adam Hilger, Bristol, Philadelphia, 1989 ; Ю. П. Рыбаков, В. И. Санюк, Многомерные солитоны, Изд-во РУДН, М., 2001 | MR | MR | Zbl | MR | Zbl | MR

[3] A. A. Belavin, A. M. Polyakov, Pisma v ZhETF, 22:10 (1975), 503–506

[4] Dzh. Elliot, P. Dober, Simmetriya v fizike, T. II, Mir, M., 1983 | MR

[5] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya. Metody i prilozheniya, Izd. 4, Nauka, M., 1998 | MR

[6] L. D. Faddeev, “V poiskakh mnogomernykh solitonov”, Nelokalnye, nelineinye i nerenormiruemye teorii polya, OIYaI, Dubna, 1976, 207–223 | MR

[7] L. Faddeev, A. J. Niemi, Phys. Rev. Lett., 82 (1999), 1624–1627 ; Nature, 387 (1997), 58–66 ; R. A. Battye, P. Sutcliffe, Phys. Rev. Lett., 81 (1998), 4798–4801 ; Proc. Roy. Soc. London. A, 455 (1999), 4305–4331 ; J. Hietarinta, P. Salo, Phys. Lett. B, 451 (1999), 60–67 | DOI | MR | Zbl | DOI | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[8] M. O. Katanaev, I. V. Volovich, Ann. Phys., 216 (1992), 1–28 ; 271 (1999), 203–232 | DOI | MR | Zbl | DOI | MR | Zbl

[9] M. O. Katanaev, TMF, 135:2 (2003), 338–352 | DOI | MR | Zbl