$N=4$ Superconformal Algebra in Curved Space and Pseudo–Hyper–Kähler Geometry
Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 1, pp. 104-115 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct the representation of the small $N=4$ superconformal algebra in curved space under the minimal interaction assumption. We find that the structure relations of the algebra are satisfied within our assumption in the background of the metric of a pseudo–hyper–Kähler manifold.
Mots-clés : superconformal algebra
Keywords: pseudo–hyper–Kähler geometry.
@article{TMF_2004_138_1_a8,
     author = {A. V. Galazhinsky and A. N. Myagkiy},
     title = {$N=4$ {Superconformal} {Algebra} in {Curved} {Space} and {Pseudo{\textendash}Hyper{\textendash}K\"ahler} {Geometry}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {104--115},
     year = {2004},
     volume = {138},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_138_1_a8/}
}
TY  - JOUR
AU  - A. V. Galazhinsky
AU  - A. N. Myagkiy
TI  - $N=4$ Superconformal Algebra in Curved Space and Pseudo–Hyper–Kähler Geometry
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 104
EP  - 115
VL  - 138
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_138_1_a8/
LA  - ru
ID  - TMF_2004_138_1_a8
ER  - 
%0 Journal Article
%A A. V. Galazhinsky
%A A. N. Myagkiy
%T $N=4$ Superconformal Algebra in Curved Space and Pseudo–Hyper–Kähler Geometry
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 104-115
%V 138
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2004_138_1_a8/
%G ru
%F TMF_2004_138_1_a8
A. V. Galazhinsky; A. N. Myagkiy. $N=4$ Superconformal Algebra in Curved Space and Pseudo–Hyper–Kähler Geometry. Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 1, pp. 104-115. http://geodesic.mathdoc.fr/item/TMF_2004_138_1_a8/

[1] J. Polchinski, String Theory, V. 1, 2, Cambridge Univ. Press, Cambridge, 1998 | MR

[2] J. Cardy, “Conformal invariance and statistical mechanics”, Champs, Cordes et Phenomenes Critiques, 49th Session of the Summer School in Theoretical Physics (Les Houches, June 28–August 5, 1988), eds. E. Brezin, J. Zinn-Justin, North-Holland, Amsterdam, 1990, 169 | MR

[3] M. Grisaru, W. Siegel, M. Rocek, Nucl. Phys. B, 159 (1979), 429 | DOI | MR

[4] N. Seiberg, Phys. Lett. B, 318 (1993), 469 | DOI | MR

[5] J. Maldacena, Adv. Theor. Math. Phys., 2 (1998), 231 | DOI | MR | Zbl

[6] P. Claus, M. Derix, R. Kallosh, J. Kumar, P. Townsend, A. Van Proeyen, Phys. Rev. Lett., 81 (1998), 4553 | DOI | MR | Zbl

[7] P. Ramond, J. Schwarz, Phys. Lett. B, 64 (1976), 75 | DOI | MR

[8] E. Bergshoeff, E. Sezgin, H. Nishino, Phys. Lett. B, 166 (1986), 141 | DOI | MR

[9] H. Ooguri, C. Vafa, Nucl. Phys. B, 361 (1991), 469 | DOI | MR

[10] W. Siegel, Phys. Rev. Lett., 69 (1992), 1493 | DOI | MR | Zbl

[11] N. Berkovits, C. Vafa, Nucl. Phys. B, 433 (1995), 123 | DOI | MR | Zbl

[12] S. Bellucci, A. Galajinsky, Nucl. Phys. B, 606 (2001), 119 | DOI | MR | Zbl

[13] S. Bellucci, A. Galajinsky, Phys. Rev. D, 65 (2002), 044013 | DOI | MR

[14] S. Bellucci, A. Galajinsky, Nucl. Phys. B, 630 (2002), 151 | DOI | MR | Zbl

[15] A. Deriglazov, S. Bellucci, A. Galajinsky, Phys. Rev. D, 65 (2002), 104026 | DOI | MR

[16] L. Alvarez-Gaumé, P. Ginsparg, Commun. Math. Phys., 102 (1985), 311 | DOI | MR | Zbl

[17] K. Yano, Differential Geometry on Complex and Almost Complex Spaces, Pergamon, Oxford, 1965 | MR | Zbl

[18] A. Lichnerowicz, Global Theory of Connections and Holonomy Groups, Noordhoff, Amsterdam, 1976 | MR | Zbl

[19] J. Barrett, G. Gibbons, M. Perry, C. Pope, P. Ruback, Int. J. Mod. Phys. A, 9 (1994), 1457 | DOI | MR | Zbl

[20] M. Abou-Zeid, C. Hull, Nucl. Phys. B, 561 (1999), 293 | DOI | MR | Zbl