The $SU_3$ Space and Its Quotient Spaces
Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 1, pp. 93-103

Voir la notice de l'article provenant de la source Math-Net.Ru

A metric description of symmetric Riemannian spaces is needed for constructing gauge fields with a symmetry. We describe the group $SU_3$ as a Riemannian space for two different parameterizations and develop a Hamiltonian technique for constructing quotient spaces. We construct the quotient spaces of the group $SU_3$, namely, the six-dimensional quotient space $(SU_3/O_2^2)$, the five-dimensional quotient space $(SU_3/O_3)$, and the two four-dimensional quotient spaces $(SU_3/O_2^4)$ and $(SU_3/O_3/O_2)$.
Mots-clés : group $SU_3$, quotient space.
Keywords: parameterization, metric, geometric Hamiltonian
@article{TMF_2004_138_1_a7,
     author = {D. E. Burlankov},
     title = {The $SU_3$  {Space} and {Its} {Quotient} {Spaces}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {93--103},
     publisher = {mathdoc},
     volume = {138},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_138_1_a7/}
}
TY  - JOUR
AU  - D. E. Burlankov
TI  - The $SU_3$  Space and Its Quotient Spaces
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 93
EP  - 103
VL  - 138
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_138_1_a7/
LA  - ru
ID  - TMF_2004_138_1_a7
ER  - 
%0 Journal Article
%A D. E. Burlankov
%T The $SU_3$  Space and Its Quotient Spaces
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 93-103
%V 138
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2004_138_1_a7/
%G ru
%F TMF_2004_138_1_a7
D. E. Burlankov. The $SU_3$  Space and Its Quotient Spaces. Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 1, pp. 93-103. http://geodesic.mathdoc.fr/item/TMF_2004_138_1_a7/