The $SU_3$ Space and Its Quotient Spaces
Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 1, pp. 93-103
Cet article a éte moissonné depuis la source Math-Net.Ru
A metric description of symmetric Riemannian spaces is needed for constructing gauge fields with a symmetry. We describe the group $SU_3$ as a Riemannian space for two different parameterizations and develop a Hamiltonian technique for constructing quotient spaces. We construct the quotient spaces of the group $SU_3$, namely, the six-dimensional quotient space $(SU_3/O_2^2)$, the five-dimensional quotient space $(SU_3/O_3)$, and the two four-dimensional quotient spaces $(SU_3/O_2^4)$ and $(SU_3/O_3/O_2)$.
Mots-clés :
group $SU_3$, quotient space.
Keywords: parameterization, metric, geometric Hamiltonian
Keywords: parameterization, metric, geometric Hamiltonian
@article{TMF_2004_138_1_a7,
author = {D. E. Burlankov},
title = {The $SU_3$ {Space} and {Its} {Quotient} {Spaces}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {93--103},
year = {2004},
volume = {138},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2004_138_1_a7/}
}
D. E. Burlankov. The $SU_3$ Space and Its Quotient Spaces. Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 1, pp. 93-103. http://geodesic.mathdoc.fr/item/TMF_2004_138_1_a7/