The $SU_3$  Space and Its Quotient Spaces
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 1, pp. 93-103
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A metric description of symmetric Riemannian spaces is needed for constructing gauge fields with a symmetry. We describe the group $SU_3$  as a Riemannian space for two different parameterizations and develop a Hamiltonian technique for constructing quotient spaces. We construct the quotient spaces of the group $SU_3$, namely, the six-dimensional quotient space $(SU_3/O_2^2)$, the five-dimensional quotient space $(SU_3/O_3)$, and the two four-dimensional quotient spaces $(SU_3/O_2^4)$ and $(SU_3/O_3/O_2)$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
group $SU_3$, quotient space.
Keywords: parameterization, metric, geometric Hamiltonian
                    
                  
                
                
                Keywords: parameterization, metric, geometric Hamiltonian
@article{TMF_2004_138_1_a7,
     author = {D. E. Burlankov},
     title = {The $SU_3$  {Space} and {Its} {Quotient} {Spaces}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {93--103},
     publisher = {mathdoc},
     volume = {138},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_138_1_a7/}
}
                      
                      
                    D. E. Burlankov. The $SU_3$ Space and Its Quotient Spaces. Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 1, pp. 93-103. http://geodesic.mathdoc.fr/item/TMF_2004_138_1_a7/
