One Property of the Renormalization Group Operator
Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 1, pp. 71-80
Cet article a éte moissonné depuis la source Math-Net.Ru
We use an isotropic ferromagnet as an example to show that the renormalization group operator can be interpreted as an evolution operator for a system of spins evolving with an increase of the reduced temperature, i.e. as the order operator of the system.
Keywords:
renormalization group, critical point, evolution operator, order operator.
Mots-clés : Kadanoff transformation, ferromagnet
Mots-clés : Kadanoff transformation, ferromagnet
@article{TMF_2004_138_1_a5,
author = {A. V. Glasko},
title = {One {Property} of the {Renormalization} {Group} {Operator}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {71--80},
year = {2004},
volume = {138},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2004_138_1_a5/}
}
A. V. Glasko. One Property of the Renormalization Group Operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 1, pp. 71-80. http://geodesic.mathdoc.fr/item/TMF_2004_138_1_a5/
[1] D. V. Shirkov, TMF, 60:2 (1984), 218 | MR
[2] V. F. Kovalev, D. V. Shirkov, TMF, 121:1 (1999), 66 | DOI | MR | Zbl
[3] D. V. Shirkov, V. F. Kovalev, Phys. Rep., 352:4–6 (2001), 219 | DOI | MR | Zbl
[4] D. O'Connor, C. R. Stephens, Phys. Rep., 352:4–6 (2001), 215 | DOI | MR
[5] Sh. Ma, Sovremennaya teoriya kriticheskikh yavlenii, Mir, M., 1980
[6] K. Vilson, Dzh. Kogut, Renormalizatsionnaya gruppa i $\varepsilon$-razlozhenie, Mir, M., 1975
[7] V. Zh. Sakbaev, Matem. zametki, 70:3 (2001), 434 | DOI | MR | Zbl
[8] A. V. Glasko, “Mera uporyadochennosti v statisticheskikh sistemakh.”, Matem. zametki (to appear) | Zbl
[9] I. N. Kovalenko, A. A. Filippova, Teoriya veroyatnostei i matematicheskaya statistika, Vysshaya shkola, M., 1982