One Property of the Renormalization Group Operator
Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 1, pp. 71-80 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use an isotropic ferromagnet as an example to show that the renormalization group operator can be interpreted as an evolution operator for a system of spins evolving with an increase of the reduced temperature, i.e. as the order operator of the system.
Keywords: renormalization group, critical point, evolution operator, order operator.
Mots-clés : Kadanoff transformation, ferromagnet
@article{TMF_2004_138_1_a5,
     author = {A. V. Glasko},
     title = {One {Property} of the {Renormalization} {Group} {Operator}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {71--80},
     year = {2004},
     volume = {138},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_138_1_a5/}
}
TY  - JOUR
AU  - A. V. Glasko
TI  - One Property of the Renormalization Group Operator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 71
EP  - 80
VL  - 138
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_138_1_a5/
LA  - ru
ID  - TMF_2004_138_1_a5
ER  - 
%0 Journal Article
%A A. V. Glasko
%T One Property of the Renormalization Group Operator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 71-80
%V 138
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2004_138_1_a5/
%G ru
%F TMF_2004_138_1_a5
A. V. Glasko. One Property of the Renormalization Group Operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 1, pp. 71-80. http://geodesic.mathdoc.fr/item/TMF_2004_138_1_a5/

[1] D. V. Shirkov, TMF, 60:2 (1984), 218 | MR

[2] V. F. Kovalev, D. V. Shirkov, TMF, 121:1 (1999), 66 | DOI | MR | Zbl

[3] D. V. Shirkov, V. F. Kovalev, Phys. Rep., 352:4–6 (2001), 219 | DOI | MR | Zbl

[4] D. O'Connor, C. R. Stephens, Phys. Rep., 352:4–6 (2001), 215 | DOI | MR

[5] Sh. Ma, Sovremennaya teoriya kriticheskikh yavlenii, Mir, M., 1980

[6] K. Vilson, Dzh. Kogut, Renormalizatsionnaya gruppa i $\varepsilon$-razlozhenie, Mir, M., 1975

[7] V. Zh. Sakbaev, Matem. zametki, 70:3 (2001), 434 | DOI | MR | Zbl

[8] A. V. Glasko, “Mera uporyadochennosti v statisticheskikh sistemakh.”, Matem. zametki (to appear) | Zbl

[9] I. N. Kovalenko, A. A. Filippova, Teoriya veroyatnostei i matematicheskaya statistika, Vysshaya shkola, M., 1982