Classifying Integrable Egoroff Hydrodynamic Chains
Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 1, pp. 55-70 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce the notion of Egoroff hydrodynamic chains. We show how they are related to integrable (2+1)-dimensional equations of hydrodynamic type. We classify these equations in the simplest case. We find (2+1)-dimensional equations that are not just generalizations of the already known Khokhlov–Zabolotskaya and Boyer–Finley equations but are much more involved. These equations are parameterized by theta functions and by solutions of the Chazy equations. We obtain analogues of the dispersionless Hirota equations.
Keywords: hydrodynamic chains and lattices, Egoroff integrable systems, dispersionless Hirota equations, tau function.
@article{TMF_2004_138_1_a4,
     author = {M. V. Pavlov},
     title = {Classifying {Integrable} {Egoroff} {Hydrodynamic} {Chains}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {55--70},
     year = {2004},
     volume = {138},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_138_1_a4/}
}
TY  - JOUR
AU  - M. V. Pavlov
TI  - Classifying Integrable Egoroff Hydrodynamic Chains
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 55
EP  - 70
VL  - 138
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_138_1_a4/
LA  - ru
ID  - TMF_2004_138_1_a4
ER  - 
%0 Journal Article
%A M. V. Pavlov
%T Classifying Integrable Egoroff Hydrodynamic Chains
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 55-70
%V 138
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2004_138_1_a4/
%G ru
%F TMF_2004_138_1_a4
M. V. Pavlov. Classifying Integrable Egoroff Hydrodynamic Chains. Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 1, pp. 55-70. http://geodesic.mathdoc.fr/item/TMF_2004_138_1_a4/

[1] B. A. Dubrovin, S. P. Novikov, DAN SSSR, 270:3 (1983), 781–785 | MR | Zbl

[2] S. P. Tsarev, DAN SSSR, 282:3 (1985), 534–537 ; Изв. АН СССР. Сер. матем., 54:5 (1990), 1048–1068 | MR | Zbl | MR | Zbl

[3] D. J. Benney, Stud. Appl. Math., 52 (1973), 45–50 | DOI | Zbl

[4] B. A. Kupershmidt, Yu. I. Manin, Funkts. analiz i ego prilozh., 12:1 (1978), 25–37 ; 11:3 (1977), 31–42 | MR | Zbl | MR | Zbl

[5] V. E. Zakharov, Funkts. analiz i ego prilozh., 14:2 (1980), 15–24 | MR | Zbl

[6] J. Gibbons, Physica D, 3:3 (1981), 503–511 | DOI | MR | Zbl

[7] V. E. Zakharov, Duke Math. J., 94:1 (1998), 103–139 | DOI | MR | Zbl

[8] J. Gibbons, Y. Kodama, Phys. Lett. A, 135:3 (1989), 167–170 ; Y. Kodama, Phys. Lett. A, 147 (1990), 477–480 ; I. M. Krichever, Commun. Math. Phys., 143:2 (1992), 415–429 ; Commun. Pure Appl. Math., 47 (1994), 437–475 | DOI | MR | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl

[9] J. Gibbons, S. P. Tsarev, Phys. Lett. A, 211 (1996), 19–24 ; 258 (1999), 263–270 ; E. V. Ferapontov, D. A. Korotkin, V. A. Shramchenko, Class. Q Grav., 19 (2002), L1–L6 | DOI | MR | Zbl | DOI | MR | DOI | MR

[10] M. V. Pavlov, S. P. Tsarev, Funkts. analiz i ego prilozh., 37:1 (2003), 38–54 | DOI | MR | Zbl

[11] D. F. Egorov, Raboty po differentsialnoi geometrii, Nauka, M., 1970 ; G. Darboux, Lecons sur les systemes orthogonaux et les coordonnes curvilignes, Gautier-Villar, Paris, 1910 | MR | MR

[12] E. V. Ferapontov, M. V. Pavlov, Class. Q Grav., 20 (2003), 2429–2441 | DOI | MR | Zbl

[13] L. Yu, J. Phys. A, 33 (2000), 8127–8138 | DOI | MR | Zbl

[14] M. Blaszak, Phys. Lett. A, 297 (2002), 191–195 ; M. Blaszak, B. M. Szablikowski, J. Phys. A, 35 (2002), 10325–10344 ; 10345–10364 | DOI | MR | Zbl | DOI | MR | Zbl | MR | Zbl