Evolution Operator for a Quantum Pendulum
Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 1, pp. 35-40
Cet article a éte moissonné depuis la source Math-Net.Ru
We conjecture one remarkable relation for infinite series in the simple Weyl algebra. This relation expresses an evolution operator for a quantum pendulum via its Hamiltonian.
Keywords:
simple Weyl algebra, compact quantum dilogarithm.
@article{TMF_2004_138_1_a2,
author = {S. M. Sergeev},
title = {Evolution {Operator} for {a~Quantum} {Pendulum}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {35--40},
year = {2004},
volume = {138},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2004_138_1_a2/}
}
S. M. Sergeev. Evolution Operator for a Quantum Pendulum. Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 1, pp. 35-40. http://geodesic.mathdoc.fr/item/TMF_2004_138_1_a2/
[1] L. D. Faddeev, R. M. Kashaev, Mod. Phys. Lett. A, 9 (1994), 427–434 | DOI | MR | Zbl
[2] S. Sergeev, J. Phys. A, 32 (1999), 5693–5714 | DOI | MR | Zbl
[3] V. V. Bazhanov, N. Yu. Reshetikhin, J. Phys. A, 28 (1995), 2217–2226 | DOI | MR | Zbl
[4] S. Sergeev, An evidence for a phase transition in three dimensional lattice models, MPI Preprint No 139, MPI, Bonn, 2002 | MR
[5] L. D. Faddeev, Lett. Math. Phys., 34 (1995), 249–254 ; “Modular double of quantum group”, Quantization, Deformation, and Symmetries, Conférence Moshé Flato 1999. V. 1 (Dijon, France, September 5–8, 1999), Math. Phys. Stud., 21, eds. G. Dito et al., Kluwer, Dordrecht, 2000, 149–156 | DOI | MR | Zbl | MR | Zbl