$SL(2)$-Solution of the Pentagon Equation and Invariants of Three-Dimensional Manifolds
Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 1, pp. 23-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct an algebraic complex corresponding to a triangulation of a three-manifold starting with a classical solution of the pentagon equation, constructed earlier by the author and Martyushev and related to the flat geometry, which is invariant under the group $SL(2)$. If this complex is acyclic (which is confirmed by examples), we can use it to construct an invariant of the manifold.
Keywords: pentagon equation, Pachner moves, invariants of manifolds.
Mots-clés : acyclic complexes, torsion
@article{TMF_2004_138_1_a1,
     author = {I. G. Korepanov},
     title = {$SL(2)${-Solution} of the {Pentagon} {Equation} and {Invariants} of {Three-Dimensional} {Manifolds}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {23--34},
     year = {2004},
     volume = {138},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_138_1_a1/}
}
TY  - JOUR
AU  - I. G. Korepanov
TI  - $SL(2)$-Solution of the Pentagon Equation and Invariants of Three-Dimensional Manifolds
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 23
EP  - 34
VL  - 138
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_138_1_a1/
LA  - ru
ID  - TMF_2004_138_1_a1
ER  - 
%0 Journal Article
%A I. G. Korepanov
%T $SL(2)$-Solution of the Pentagon Equation and Invariants of Three-Dimensional Manifolds
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 23-34
%V 138
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2004_138_1_a1/
%G ru
%F TMF_2004_138_1_a1
I. G. Korepanov. $SL(2)$-Solution of the Pentagon Equation and Invariants of Three-Dimensional Manifolds. Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 1, pp. 23-34. http://geodesic.mathdoc.fr/item/TMF_2004_138_1_a1/

[1] I. G. Korepanov, TMF, 131:3 (2002), 377–388 | DOI | MR | Zbl

[2] I. G. Korepanov, TMF, 133:1 (2002), 24–35 | DOI | MR | Zbl

[3] I. G. Korepanov, TMF, 135:2 (2003), 179–195 | DOI | MR | Zbl

[4] I. G. Korepanov, E. V. Martyushev, J. Nonlin. Math. Phys., 9:1 (2002), 86–98 | DOI | MR | Zbl

[5] I. G. Korepanov, E. V. Martyushev, TMF, 129:1 (2001), 14–19 | DOI | MR | Zbl

[6] I. G. Korepanov, J. Nonlin. Math. Phys., 8:2 (2001), 196–210 | DOI | MR | Zbl

[7] E. V. Martyushev, Izvestiya Chelyabinskogo nauchnogo tsentra UrO (Uralskogo otdeleniya) RAN, 2003, no. 2(19), 1–5 ; http://csc.ac.ru/news/2003_2 | MR