$SL(2)$-Solution of the Pentagon Equation and Invariants of Three-Dimensional Manifolds
Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 1, pp. 23-34
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct an algebraic complex corresponding to a triangulation of a three-manifold starting with a classical solution of the pentagon equation, constructed earlier by the author and Martyushev and related to the flat geometry, which is invariant under the group $SL(2)$. If this complex is acyclic (which is confirmed by examples), we can use it to construct an invariant of the manifold.
Keywords:
pentagon equation, Pachner moves, invariants of manifolds.
Mots-clés : acyclic complexes, torsion
Mots-clés : acyclic complexes, torsion
@article{TMF_2004_138_1_a1,
author = {I. G. Korepanov},
title = {$SL(2)${-Solution} of the {Pentagon} {Equation} and {Invariants} of {Three-Dimensional} {Manifolds}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {23--34},
publisher = {mathdoc},
volume = {138},
number = {1},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2004_138_1_a1/}
}
TY - JOUR AU - I. G. Korepanov TI - $SL(2)$-Solution of the Pentagon Equation and Invariants of Three-Dimensional Manifolds JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2004 SP - 23 EP - 34 VL - 138 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2004_138_1_a1/ LA - ru ID - TMF_2004_138_1_a1 ER -
I. G. Korepanov. $SL(2)$-Solution of the Pentagon Equation and Invariants of Three-Dimensional Manifolds. Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 1, pp. 23-34. http://geodesic.mathdoc.fr/item/TMF_2004_138_1_a1/