BRST-Invariant Algebra of Constraints in Terms of Commutators and Quantum Antibrackets
Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 1, pp. 3-22
Voir la notice de l'article provenant de la source Math-Net.Ru
We establish the general structure of the BRST-invariant algebra of constraints in its commutator and antibracket forms via the formulation of algebra-generating equations in a supplementally extended phase space. New ghost-type variables behave as fields and antifields with respect to quantum antibrackets. The explicit form of the BRST-invariant gauge algebra is given in detail for rank-one theories with a Weyl and a Wick-ordered ghost sector. We construct a ixed-gauge unitarizing Hamiltonian and show that the formalism is physically equivalent to the standard BRST–BFV approach.
Keywords:
BRST symmetry, algebra of constraints, quantum antibracket.
@article{TMF_2004_138_1_a0,
author = {I. A. Batalin and I. V. Tyutin},
title = {BRST-Invariant {Algebra} of {Constraints} in {Terms} of {Commutators} and {Quantum} {Antibrackets}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {3--22},
publisher = {mathdoc},
volume = {138},
number = {1},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2004_138_1_a0/}
}
TY - JOUR AU - I. A. Batalin AU - I. V. Tyutin TI - BRST-Invariant Algebra of Constraints in Terms of Commutators and Quantum Antibrackets JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2004 SP - 3 EP - 22 VL - 138 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2004_138_1_a0/ LA - ru ID - TMF_2004_138_1_a0 ER -
%0 Journal Article %A I. A. Batalin %A I. V. Tyutin %T BRST-Invariant Algebra of Constraints in Terms of Commutators and Quantum Antibrackets %J Teoretičeskaâ i matematičeskaâ fizika %D 2004 %P 3-22 %V 138 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2004_138_1_a0/ %G ru %F TMF_2004_138_1_a0
I. A. Batalin; I. V. Tyutin. BRST-Invariant Algebra of Constraints in Terms of Commutators and Quantum Antibrackets. Teoretičeskaâ i matematičeskaâ fizika, Tome 138 (2004) no. 1, pp. 3-22. http://geodesic.mathdoc.fr/item/TMF_2004_138_1_a0/