Amalgamations of the Painlevé Equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 3, pp. 408-423 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present new hierarchies of nonlinear ordinary differential equations (ODEs) that are generalizations of the Painlevé equations. These hierarchies contain the Painlevé equations as special cases. We emphasize the sixth-order ODEs. Special solutions for one of them are expressed via the general solutions of the $P_1$ and $P_2$ equations and special cases of the $P_3$ and $P_5$ equations. Four of the six Painlevé equations can be considered special cases of these sixth-order ODEs. We give linear representations for solving the Cauchy problems for the hierarchy equations using the inverse monodromy transform.
Mots-clés : Painlevé equations, Painlevé transcendents
Keywords: higher analogues, isomonodromic linear problem.
@article{TMF_2003_137_3_a7,
     author = {N. A. Kudryashov},
     title = {Amalgamations of the {Painlev\'e} {Equations}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {408--423},
     year = {2003},
     volume = {137},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_137_3_a7/}
}
TY  - JOUR
AU  - N. A. Kudryashov
TI  - Amalgamations of the Painlevé Equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 408
EP  - 423
VL  - 137
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_137_3_a7/
LA  - ru
ID  - TMF_2003_137_3_a7
ER  - 
%0 Journal Article
%A N. A. Kudryashov
%T Amalgamations of the Painlevé Equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 408-423
%V 137
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2003_137_3_a7/
%G ru
%F TMF_2003_137_3_a7
N. A. Kudryashov. Amalgamations of the Painlevé Equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 3, pp. 408-423. http://geodesic.mathdoc.fr/item/TMF_2003_137_3_a7/

[1] R. Conte, “The Painlevé approach to nonlinear ordinary differential equations”, The Painleve Property. One Century Later, CRM Series in Math. Phys., ed. R. Conte, Springer, New York, 1999, 77–108 ; M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge Univ. Press, Cambridge, 1991 | MR | Zbl | MR | Zbl

[2] H. Airault, Stud. Appl. Math., 61 (1979), 31 | DOI | MR | Zbl

[3] N. A. Kudryashov, Phys. Lett. A, 224 (1997), 353 | DOI | MR

[4] N. A. Kudryashov, Phys. Lett. A, 252 (1999), 173 ; A. N. W. Hone, Physica D, 118 (1998), 1 ; P. R. Gordoa, A. Pickering, J. Math. Phys., 40 (1999), 5749 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[5] N. A. Kudryashov, J. Phys. A, 35 (2002), 4617 | DOI | MR | Zbl

[6] R. Garnier, Ann. Ec. Norm., 29 (1912), 1–126 | MR | Zbl

[7] H. Flachka, A. C. Newell, Commun. Math. Phys., 76 (1980), 65 | DOI | MR

[8] M. Jimbo, T. Miwa, K. Ueno, Physica D, 2 (1981), 306 | DOI | MR | Zbl

[9] R. Conte, M. Musette, Chaos, Solitons and Fractals, 11 (2000), 41 | DOI | MR | Zbl

[10] V. E. Adler, A. B. Shabat, R. I. Yamilov, TMF, 125 (2000), 355 | DOI | Zbl

[11] C. Cresswell, N. Joshi, “The discrete Painlevé I hierarchy”, Symmetries and Integrability of Difference Equations, Proc. of the 2nd Int. Conf. (Caunterbury, UK, July 1–5, 1996), Lond. Math. Soc. Lect. Notes Ser., 255, eds. P. A. Clarkson et al., Cambridge Univ. Press, Cambridge, 1999, 197–205 | MR | Zbl

[12] P. R. Gordoa, N. Joshi, A. Pickering, Publ. RIMS Kyoto Univ, 37 (2001), 327 | DOI | MR | Zbl

[13] P. D. Lax, Pure Appl. Math., 21 (1968), 467 | DOI | MR | Zbl

[14] A. Pickering, Phys. Lett. A, 301 (2002), 275 | DOI | MR | Zbl

[15] C. M. Cosgrove, Stud. Appl. Math., 104 (2000), 1 | DOI | MR | Zbl

[16] U. Mugan, F. Jrad, J. Phys. A, 32 (1999), 7933 | DOI | MR | Zbl

[17] N. A. Kudryashov, J. Nonlinear Math. Phys., 8 (2001), 172 | DOI | MR | Zbl

[18] N. A. Kudryashov, M. B. Soukharev, Phys. Lett. A, 237 (1998), 206 | DOI | MR | Zbl

[19] V. I. Gromak, Diff. uravneniya, 35 (1999), 38 ; P. R. Gordoa, Phys. Lett. A, 287 (2001), 365 ; N. A. Kudryashov, J. Phys. A, 31 (1998), L129 ; 32 (1999), 999 | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[20] P. A. Clarkson, N. Joshi, A. Pickering, Inverse Problems, 15 (1999), 175 | DOI | MR | Zbl

[21] U. Mugan, F. Jrad, J. Nonlinear Math. Phys., 9 (2002), 1 | DOI | MR

[22] A. N. W. Hone, J. Phys. A, 34 (2001), 2235 | DOI | MR | Zbl

[23] M. Noumi, Y. Yamada, Commun. Math. Phys., 199 (1998), 281 | DOI | MR | Zbl