Amalgamations of the Painlev\'e Equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 3, pp. 408-423

Voir la notice de l'article provenant de la source Math-Net.Ru

We present new hierarchies of nonlinear ordinary differential equations (ODEs) that are generalizations of the Painlevé equations. These hierarchies contain the Painlevé equations as special cases. We emphasize the sixth-order ODEs. Special solutions for one of them are expressed via the general solutions of the $P_1$ and $P_2$ equations and special cases of the $P_3$ and $P_5$ equations. Four of the six Painlevé equations can be considered special cases of these sixth-order ODEs. We give linear representations for solving the Cauchy problems for the hierarchy equations using the inverse monodromy transform.
Keywords: Painlevé equations, Painlevé transcendents, higher analogues, isomonodromic linear problem.
@article{TMF_2003_137_3_a7,
     author = {N. A. Kudryashov},
     title = {Amalgamations of the {Painlev\'e} {Equations}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {408--423},
     publisher = {mathdoc},
     volume = {137},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_137_3_a7/}
}
TY  - JOUR
AU  - N. A. Kudryashov
TI  - Amalgamations of the Painlev\'e Equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 408
EP  - 423
VL  - 137
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_137_3_a7/
LA  - ru
ID  - TMF_2003_137_3_a7
ER  - 
%0 Journal Article
%A N. A. Kudryashov
%T Amalgamations of the Painlev\'e Equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 408-423
%V 137
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2003_137_3_a7/
%G ru
%F TMF_2003_137_3_a7
N. A. Kudryashov. Amalgamations of the Painlev\'e Equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 3, pp. 408-423. http://geodesic.mathdoc.fr/item/TMF_2003_137_3_a7/