Monodromy Approach to the Scaling Limits in Isomonodromy Systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 3, pp. 393-407
Voir la notice de l'article provenant de la source Math-Net.Ru
The isomonodromy deformation method is applied to the scaling limits in the linear $(N\times N)$ matrix equations with rational coefficients to obtain the deformation equations for the algebraic curves that describe the local behavior of the reduced versions for the relevant isomonodromy deformation equations. The approach is illustrated by the study of the algebraic curve associated with the $n$-large asymptotics in the sequence of the biorthogonal polynomials with cubic potentials.
Keywords:
scaling limits, WKB method, spectral curve
Mots-clés : isomonodromic deformations, modulation equations.
Mots-clés : isomonodromic deformations, modulation equations.
@article{TMF_2003_137_3_a6,
author = {A. A. Kapaev},
title = {Monodromy {Approach} to the {Scaling} {Limits} in {Isomonodromy} {Systems}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {393--407},
publisher = {mathdoc},
volume = {137},
number = {3},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2003_137_3_a6/}
}
A. A. Kapaev. Monodromy Approach to the Scaling Limits in Isomonodromy Systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 3, pp. 393-407. http://geodesic.mathdoc.fr/item/TMF_2003_137_3_a6/