Scalar Products of Symmetric Functions and Matrix Integrals
Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 3, pp. 375-392 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present relations between Hirota-type bilinear operators, scalar products on spaces of symmetric functions, and integrals defining matrix-model partition functions. Using the fermionic Fock space representation, we prove an expansion of an associated class of KP and 2-Toda tau functions $\tau_{r,n}$ in a series of Schur functions generalizing the hypergeometric series and relate it to the scalar product formulas. We show how special cases of such tau functions can be identified as formal series for partition functions. A closed form expansion of $\ln\tau_{r,n}$ in terms of Schur functions is derived.
Keywords: symmetric functions, hypergeometric functions, statistical sums, tau functions, matrix models, Toda lattices.
@article{TMF_2003_137_3_a5,
     author = {J. Harnad and A. Yu. Orlov},
     title = {Scalar {Products} of {Symmetric} {Functions} and {Matrix} {Integrals}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {375--392},
     year = {2003},
     volume = {137},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_137_3_a5/}
}
TY  - JOUR
AU  - J. Harnad
AU  - A. Yu. Orlov
TI  - Scalar Products of Symmetric Functions and Matrix Integrals
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 375
EP  - 392
VL  - 137
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_137_3_a5/
LA  - ru
ID  - TMF_2003_137_3_a5
ER  - 
%0 Journal Article
%A J. Harnad
%A A. Yu. Orlov
%T Scalar Products of Symmetric Functions and Matrix Integrals
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 375-392
%V 137
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2003_137_3_a5/
%G ru
%F TMF_2003_137_3_a5
J. Harnad; A. Yu. Orlov. Scalar Products of Symmetric Functions and Matrix Integrals. Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 3, pp. 375-392. http://geodesic.mathdoc.fr/item/TMF_2003_137_3_a5/

[1] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Clarendon Press, Oxford, 1995 | MR | Zbl

[2] M. Feigin, A. P. Veselov, Internat. Math. Res. Notices, 10 (2002), 521–545 | DOI | MR | Zbl

[3] A. Yu. Orlov, D. M. Scherbin, TMF, 128:1 (2001), 84–108 | DOI | MR | Zbl

[4] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, “Transformation groups for soliton equations”, Nonlinear Integrable Systems – Classical Theory and Quantum Theory, Proc RIMS (Kioto, 1981), eds. M. Jimbo, T. Miwa, World Scientific, Singapore, 1983, 39–120 | MR

[5] K. Ueno, K. Takasaki, Adv. Stud. Pure Math., 4, 1984, 1–95 | MR | Zbl

[6] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: Metod obratnoi zadachi, Nauka, M., 1980 | MR

[7] L. A. Dickey, Soliton Equations and Hamiltonian Systems, Adv. Ser. Math. Phys., 12, World Scientific, Singapore–New Jersey–London, 1991 | DOI | MR | Zbl

[8] P. Vinternits, A. Yu. Orlov, TMF, 113:2 (1997), 231–260 | DOI | MR

[9] K. Takasaki, Commun. Math. Phys., 181 (1996), 131–156 | DOI | MR | Zbl

[10] A. Yu. Orlov, Soliton theory, symmetric functions and matrix integrals, E-print nlin.SI/0207030 | MR

[11] T. Takebe, Lett. Math. Phys., 21 (1991), 77–84 | DOI | MR | Zbl

[12] L.-L. Chau, O. Zaboronsky, Commun. Math. Phys., 196 (1998), 203–247 ; E-print hep-th/9711091 | DOI | MR | Zbl

[13] M. Mineev-Weinstein, P. Wiegmann, A. Zabrodin, Phys. Rev. Lett., 84 (2000), 5106–5109 | DOI

[14] J. Harnad, A. Yu. Orlov, Matrix integrals as Borel sums of Schur function expansions, Preprint CRM-2865, CRM, Montréal, 2002 ; ; Symmetry and Perturbation Theory SPT2002, eds. S. Abenda, G. Gaeta, S. Walcher, World Scientific, Singapore, 2003 E-print nlin.SI/0209035 | MR | MR

[15] J. Harnad, A. Yu. Orlov, Schur function expansions of matrix integrals, Preprint CRM, CRM, Montréal, 2002

[16] M. L. Mehta, Random Matrices, Academic Press, San Diego, 1991 | MR | Zbl

[17] C. Itzykson, J. B. Zuber, J. Math. Phys., 21 (1980), 411–421 | DOI | MR | Zbl

[18] A. Gerasimov, A. Marshakov, A. Mironov, A. Morozov, A. Orlov, Nucl. Phys. B, 357 (1991), 565–618 | DOI | MR

[19] M. Bertola, B. Eynard, J. Harnad, J. Phys. A, 36 (2003), 3067–3084 ; E-print nlin.SI/0204054 | DOI | MR

[20] B. Eynard, Random matrices, Preprint Saclay-T01/014, CRM-2708, Cours de Physique Theorique de Saclay, Paris, 2001

[21] Yu. Klimov, A. Korzh, S. Natanson, From 2D Toda hierarchy to conformal map for domains of Riemann sphere, E-print math.NA/0212361 | MR