Maximally Superintegrable Gaudin Magnet: A Unified Approach
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 3, pp. 336-343
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A classical integrable Hamiltonian system is defined by an Abelian subalgebra (of suitable dimension) of a Poisson algebra, while a quantum integrable Hamiltonian system is defined by an Abelian subalgebra (of suitable dimension) of a Jordan–Lie algebra of Hermitian operators. We propose a method for obtaining “large” Abelian subalgebras inside the tensor product of free tensor algebras, and we show that there exist canonical morphisms from these algebras to Poisson algebras and Jordan–Lie algebras of operators. We can thus prove the integrability of some particular Hamiltonian systems simultaneously at both the classical and the quantum level. We propose a particular case of the rational Gaudin magnet as an example.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
superintegrability, Gaudin magnet
Mots-clés : coalgebras.
                    
                  
                
                
                Mots-clés : coalgebras.
@article{TMF_2003_137_3_a2,
     author = {\'A. Ballesteros and F. Musso and O. Ragnisco},
     title = {Maximally {Superintegrable} {Gaudin} {Magnet:} {A} {Unified} {Approach}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {336--343},
     publisher = {mathdoc},
     volume = {137},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_137_3_a2/}
}
                      
                      
                    TY - JOUR AU - Á. Ballesteros AU - F. Musso AU - O. Ragnisco TI - Maximally Superintegrable Gaudin Magnet: A Unified Approach JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2003 SP - 336 EP - 343 VL - 137 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2003_137_3_a2/ LA - ru ID - TMF_2003_137_3_a2 ER -
Á. Ballesteros; F. Musso; O. Ragnisco. Maximally Superintegrable Gaudin Magnet: A Unified Approach. Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 3, pp. 336-343. http://geodesic.mathdoc.fr/item/TMF_2003_137_3_a2/
