Stochastic Perturbations of Line Solitons of KP
Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 3, pp. 469-483 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the properties of localized solutions of the KP equation coupled to a stochastic noise. Corresponding to white noise, we find that the traveling waves are destroyed asymptotically, and we determine the distribution of the wave position and the arrival time. For generalized Ornstein–Uhlenbeck processes, we show that the only effect of noise is to render the asymptotic position random; in particular, when the noise has a sufficiently strong attenuation mechanism, the random wave coincides asymptotically with the unperturbed one. We also consider linearization of the corresponding Cauchy problem in the plane corresponding to this kind of initial data.
Keywords: stochastic integrable equations, random waves.
Mots-clés : solitons
@article{TMF_2003_137_3_a12,
     author = {Kh. Villarroel},
     title = {Stochastic {Perturbations} of {Line} {Solitons} of {KP}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {469--483},
     year = {2003},
     volume = {137},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_137_3_a12/}
}
TY  - JOUR
AU  - Kh. Villarroel
TI  - Stochastic Perturbations of Line Solitons of KP
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 469
EP  - 483
VL  - 137
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_137_3_a12/
LA  - ru
ID  - TMF_2003_137_3_a12
ER  - 
%0 Journal Article
%A Kh. Villarroel
%T Stochastic Perturbations of Line Solitons of KP
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 469-483
%V 137
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2003_137_3_a12/
%G ru
%F TMF_2003_137_3_a12
Kh. Villarroel. Stochastic Perturbations of Line Solitons of KP. Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 3, pp. 469-483. http://geodesic.mathdoc.fr/item/TMF_2003_137_3_a12/

[1] M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge Univ. Press, Cambridge, 1991 ; М. Абловиц, Х. Сигур, Солитоны и метод обратной задачи, Мир, М., 1987 ; M. J. Ablowitz, A. S. Fokas, “Comments on the inverse scattering transform and related nonlinear evolution equations”, Nonlinear Phenomena, Proc. CIFMO School and Workshop (Oaxtepec, Mexico, November 29–December 17, 1982), Lect. Notes Phys., 189, ed. K. B. Wolf, Springer, Berlin, 1983, 3–24 ; A. S. Fokas, M. J. Ablowitz, “The inverse scattering transform for multidimensional $(2+1)$ problems”, Nonlinear Phenomena, Proc. CIFMO School and Workshop (Oaxtepec, Mexico, November 29–December 17, 1982), Lect. Notes Phys., 189, ed. K. B. Wolf, Springer, Berlin, 1983, 137–183 | MR | Zbl | MR | DOI | MR | DOI | MR

[2] M. J. Ablowitz, J. Villaroel, “Initial value problems and solutions of the Kadomtsev–Petviashvili equation”, New Trends in Integrability and Partial Solvability, Proc. NATO Advanced Research Workshop (Cádiz, Spain, June 13–15, 2002), Kluwer (to appear) | MR

[3] M. Wadati, J. Phys. Soc. Japan, 52 (1983), 2642 | DOI | MR

[4] H. Konno, J. Phys. Soc. Japan, 54 (1985), 4475 ; A. Orlowski, K. Sobczyk, Rep. Math. Phys., 27 (1989), 59 | DOI | MR | DOI | MR | Zbl

[5] J. Villaroel, Stud. Appl. Math., 112 (2004), 87 | DOI | MR

[6] S. de Lillo, Phys. Lett. A, 188 (1994), 305 | DOI | MR | Zbl

[7] W. Horsthemke, R. Lefever, Noise-Induced Transitions. Theory and Applications in Physics, Chemistry, and Biology, Springer Ser. Synergetics, 15, Springer, Berlin, 1984 ; R. N. Bhattacharya, E. C. Waymire, Stochastic Processes with Applications, Wiley Ser. Probability, Wiley, New York, 1990 | MR | Zbl | MR

[8] G. Roepstorff, Path Integral Approach to Quantum Physics, Springer, Berlin, 1996 | MR | Zbl

[9] V. Konotop, L. Vázquez, Nonlinear Random Waves, World Scientific, Singapore, 1994 | MR | Zbl

[10] V. Dryuma, Pisma v ZhETF, 19 (1974), 753

[11] A. S. Fokas, M. J. Ablowitz, Stud. Appl. Math., 69 (1983), 211 | DOI | MR | Zbl

[12] V. Belashov, Phys. Lett. A, 197 (1995), 282 | DOI

[13] J. Villaroel, J. Comp. Appl. Math., 158:1 (2003), 225 | DOI | MR

[14] J. Villarroel, M. J. Ablowitz, Stud. Appl. Math., 109 (2002), 151 | DOI | MR | Zbl

[15] M. Boiti, F. Pempinelli, A. Pogrebkov, Inverse Problems, 13 (1997), L7 ; M. Boiti, F. Pempinelli, A. Pogrebkov, B. Prinari, Inverse Problems, 17 (2001), 937 ; Phys. Lett. A, 285 (2001), 307 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[16] P. Deift, E. Trubowitz, Commun. Pure Appl. Math., 32 (1979), 121 ; L. Faddeev, J. Math. Phys., 4 (1963), 72 | DOI | MR | Zbl | DOI | MR