Stochastic Perturbations of Line Solitons of KP
Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 3, pp. 469-483

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the properties of localized solutions of the KP equation coupled to a stochastic noise. Corresponding to white noise, we find that the traveling waves are destroyed asymptotically, and we determine the distribution of the wave position and the arrival time. For generalized Ornstein–Uhlenbeck processes, we show that the only effect of noise is to render the asymptotic position random; in particular, when the noise has a sufficiently strong attenuation mechanism, the random wave coincides asymptotically with the unperturbed one. We also consider linearization of the corresponding Cauchy problem in the plane corresponding to this kind of initial data.
Keywords: stochastic integrable equations, random waves.
Mots-clés : solitons
@article{TMF_2003_137_3_a12,
     author = {Kh. Villarroel},
     title = {Stochastic {Perturbations} of {Line} {Solitons} of {KP}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {469--483},
     publisher = {mathdoc},
     volume = {137},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_137_3_a12/}
}
TY  - JOUR
AU  - Kh. Villarroel
TI  - Stochastic Perturbations of Line Solitons of KP
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 469
EP  - 483
VL  - 137
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_137_3_a12/
LA  - ru
ID  - TMF_2003_137_3_a12
ER  - 
%0 Journal Article
%A Kh. Villarroel
%T Stochastic Perturbations of Line Solitons of KP
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 469-483
%V 137
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2003_137_3_a12/
%G ru
%F TMF_2003_137_3_a12
Kh. Villarroel. Stochastic Perturbations of Line Solitons of KP. Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 3, pp. 469-483. http://geodesic.mathdoc.fr/item/TMF_2003_137_3_a12/