Stochastic Perturbations of Line Solitons of KP
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 3, pp. 469-483
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider the properties of localized solutions of the KP equation coupled to a stochastic noise. Corresponding to white noise, we find that the traveling waves are destroyed asymptotically, and we determine the distribution of the wave position and the arrival time. For generalized Ornstein–Uhlenbeck processes, we show that the only effect of noise is to render the asymptotic position random; in particular, when the noise has a sufficiently strong attenuation mechanism, the random wave coincides asymptotically with the unperturbed one. We also consider linearization of the corresponding Cauchy problem in the plane corresponding to this kind of initial data.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
stochastic integrable equations, random waves.
Mots-clés : solitons
                    
                  
                
                
                Mots-clés : solitons
@article{TMF_2003_137_3_a12,
     author = {Kh. Villarroel},
     title = {Stochastic {Perturbations} of {Line} {Solitons} of {KP}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {469--483},
     publisher = {mathdoc},
     volume = {137},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_137_3_a12/}
}
                      
                      
                    Kh. Villarroel. Stochastic Perturbations of Line Solitons of KP. Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 3, pp. 469-483. http://geodesic.mathdoc.fr/item/TMF_2003_137_3_a12/
