Painlevé Hierarchies and the Painlevé Test
Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 3, pp. 445-456 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In a series of recent papers, we derived several new hierarchies of higher-order analogues of the six Painlevé equations. Here we consider one particular example of such a hierarchy, namely, a recently derived fourth Painlevé hierarchy. We use this hierarchy to illustrate how knowing the Hamiltonian structures and Miura maps can allow finding first integrals of the ordinary differential equations derived. We also consider the implications of the second member of this hierarchy for the Painlevé test. In particular, we find that the Ablowitz–Ramani–Segur algorithm cannot be applied to this equation. This represents a significant failing in what is now a standard test of singularity structure. We present a solution of this problem.
Mots-clés : Painlevé test, Painlevé hierarchy.
@article{TMF_2003_137_3_a10,
     author = {A. Pickering},
     title = {Painlev\'e {Hierarchies} and the {Painlev\'e} {Test}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {445--456},
     year = {2003},
     volume = {137},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_137_3_a10/}
}
TY  - JOUR
AU  - A. Pickering
TI  - Painlevé Hierarchies and the Painlevé Test
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 445
EP  - 456
VL  - 137
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_137_3_a10/
LA  - ru
ID  - TMF_2003_137_3_a10
ER  - 
%0 Journal Article
%A A. Pickering
%T Painlevé Hierarchies and the Painlevé Test
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 445-456
%V 137
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2003_137_3_a10/
%G ru
%F TMF_2003_137_3_a10
A. Pickering. Painlevé Hierarchies and the Painlevé Test. Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 3, pp. 445-456. http://geodesic.mathdoc.fr/item/TMF_2003_137_3_a10/

[1] U. Muğan, F. Jrad, J. Phys. A, 32 (1999), 7933–7952 ; J. Nonlinear Math. Phys., 9 (2002), 282–310 ; C. M. Cosgrove, Stud. Appl. Math., 104 (2000), 1–65 | DOI | MR | DOI | MR | DOI | MR | Zbl

[2] M. J. Ablowitz, H. Segur, Phys. Rev. Lett., 38 (1977), 1103–1106 | DOI | MR

[3] H. Airault, Stud. Appl. Math., 61 (1979), 31–53 | DOI | MR | Zbl

[4] P. R. Gordoa, A. Pickering, Europhys. Lett., 47 (1999), 21–24 | DOI | MR

[5] P. R. Gordoa, A. Pickering, J. Math. Phys., 40 (1999), 5749–5786 | DOI | MR | Zbl

[6] P. R. Gordoa, A. Pickering, J. Phys. A, 33 (2000), 557–567 | DOI | MR | Zbl

[7] P. R. Gordoa, N. Joshi, A. Pickering, Publ. RIMS Kyoto Univ., 37 (2001), 327–347 | DOI | MR | Zbl

[8] D. Levi, O. Ragnisko, M. A. Rodriges, TMF, 93 (1992), 473–480 | MR | Zbl

[9] B. A. Kupershmidt, Commun. Math. Phys., 99 (1985), 51–73 | DOI | MR | Zbl

[10] M. J. Ablowitz, A. Ramani, H. Segur, J. Math. Phys., 21 (1980), 715–721 | DOI | MR | Zbl

[11] P. R. Gordoa, N. Joshi, A. Pickering, Publ. RIMS Kyoto Univ., 39 (2003), 435–449 | DOI | MR | Zbl

[12] A. Pickering, Testing Nonlinear Evolution Equations for Complete Integrability, Ph. D. thesis, University of Leeds, 1992

[13] R. Conte, A. P. Fordy, A. Pickering, Phys. D, 69 (1993), 33–58 | DOI | MR | Zbl