Painlev\'e Hierarchies and the Painlev\'e Test
Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 3, pp. 445-456
Voir la notice de l'article provenant de la source Math-Net.Ru
In a series of recent papers, we derived several new hierarchies of higher-order analogues of the six Painlevé equations. Here we consider one particular example of such a hierarchy, namely, a recently derived fourth Painlevé hierarchy. We use this hierarchy to illustrate how knowing the Hamiltonian structures and Miura maps can allow finding first integrals of the ordinary differential equations derived. We also consider the implications of the second member of this hierarchy for the Painlevé test. In particular, we find that the Ablowitz–Ramani–Segur algorithm cannot be applied to this equation. This represents a significant failing in what is now a standard test of singularity structure. We present a solution of this problem.
Keywords:
Painlevé test, Painlevé hierarchy.
@article{TMF_2003_137_3_a10,
author = {A. Pickering},
title = {Painlev\'e {Hierarchies} and the {Painlev\'e} {Test}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {445--456},
publisher = {mathdoc},
volume = {137},
number = {3},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2003_137_3_a10/}
}
A. Pickering. Painlev\'e Hierarchies and the Painlev\'e Test. Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 3, pp. 445-456. http://geodesic.mathdoc.fr/item/TMF_2003_137_3_a10/