$C$-KP and $B$-KP Equations Related to the Generalized Quartic Hénon–Heiles Hamiltonian
Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 2, pp. 239-252 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In their classification of soliton equations from a group theoretical standpoint according to the representation of infinite Lie algebras, Jimbo and Miwa listed bilinear equations of low degree for the KP and the modified KP hierarchies. In this list, we consider the $(1+1)$-dimensional reductions of three particular equations of special interest for establishing some new links with the generalized Hénon–Heiles Hamiltonian, possibly useful for integrating the latter with functions having the Painlevé property. Two of those partial differential equations have $N$-soliton solutions that, as for the Kaup–Kupershmidt equation, can be written as the logarithmic derivative of a Grammian. Moreover, they can describe head-on collisions of solitary waves of different type and shape.
Mots-clés : soliton equations
Keywords: coupled KdV-type equations, fourth-order Lax pairs, fifth-order Lax pairs, Hamiltonian systems.
@article{TMF_2003_137_2_a9,
     author = {M. Musette and C. Verhoeven},
     title = {$C${-KP} and $B${-KP} {Equations} {Related} to the {Generalized} {Quartic} {H\'enon{\textendash}Heiles} {Hamiltonian}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {239--252},
     year = {2003},
     volume = {137},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_137_2_a9/}
}
TY  - JOUR
AU  - M. Musette
AU  - C. Verhoeven
TI  - $C$-KP and $B$-KP Equations Related to the Generalized Quartic Hénon–Heiles Hamiltonian
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 239
EP  - 252
VL  - 137
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_137_2_a9/
LA  - ru
ID  - TMF_2003_137_2_a9
ER  - 
%0 Journal Article
%A M. Musette
%A C. Verhoeven
%T $C$-KP and $B$-KP Equations Related to the Generalized Quartic Hénon–Heiles Hamiltonian
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 239-252
%V 137
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2003_137_2_a9/
%G ru
%F TMF_2003_137_2_a9
M. Musette; C. Verhoeven. $C$-KP and $B$-KP Equations Related to the Generalized Quartic Hénon–Heiles Hamiltonian. Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 2, pp. 239-252. http://geodesic.mathdoc.fr/item/TMF_2003_137_2_a9/

[1] M. Jimbo, T. Miwa, Publ. Res. Inst. Math. Sci., 19 (1983), 943 | DOI | MR | Zbl

[2] J. Satsuma, R. Hirota, J. Phys. Soc. Japan, 51 (1982), 3390 | DOI | MR

[3] V. G. Drinfeld, V. V. Sokolov, DAN SSSR, 258 (1981), 11 | MR | Zbl

[4] V. G. Drinfel'd, V. V. Sokolov, J. Sov. Math., 30 (1985), 1975 | DOI | Zbl

[5] O. I. Bogoyavlenskii, UMN, 45:4 (1990), 17 | MR | Zbl

[6] X.-B. Hu, D.-L. Wang, X.-M. Qian, Phys. Lett. A, 262 (1999), 409 | DOI | MR | Zbl

[7] J. M. Dye, A. Parker, J. Math. Phys., 42 (2001), 2567 | DOI | MR | Zbl

[8] D. J. Kaup, Stud. Appl. Math., 62 (1980), 189 | DOI | MR | Zbl

[9] A. Ramani, “Inverse scattering, ordinary differential equations of Pailevé type, and Hirota's bilinear formalism”, Fourth Intl. Conf. on Collective Phenomena, Ann. New York Acad. Sci., 373, ed. J. Lebowitz, 1981, 54 | DOI | MR | Zbl

[10] K. Sawada, T. Kotera, Progr. Theor. Phys., 51 (1974), 1355 | DOI | MR | Zbl

[11] M. Hénon, C. Heiles, Astron. J., 69 (1964), 73 | DOI | MR

[12] S. Baker, V. Z. Enolskii, A. P. Fordy, Phys. Lett. A, 201 (1995), 167 | DOI | MR | Zbl

[13] S. Baker, Squared eigenfunction representations of integrable hierarchies, Ph. D. thesis, Univ. of Leeds, 1995 | Zbl

[14] A. P. Fordy, Phys. D, 87 (1995), 20 | DOI | MR | Zbl

[15] C. Verhoeven, M. Musette, J. Phys. A, 34 (2001), L721 | DOI | MR | Zbl

[16] I. Loris, Inverse Problems, 15 (1999), 1099 | DOI | MR | Zbl

[17] M. Musette, C. Verhoeven, Phys. D, 144 (2000), 211 | DOI | MR | Zbl

[18] B. Grammaticos, B. Dorizzi, A. Ramani, J. Math. Phys., 25 (1984), 3470 | DOI | MR

[19] J. Hietarinta, Phys. Rep., 147 (1987), 87 | DOI | MR

[20] F. J. Romeiras, J. Math. Phys., 36 (1995), 3559 | DOI | MR | Zbl

[21] V. Ravoson, A. Ramani, B. Grammaticos, Phys. Lett. A, 191 (1994), 91 | DOI | MR | Zbl

[22] S. Wojciechowski, Physica Scripta, 31 (1985), 433 | DOI | MR | Zbl

[23] F. J. Romeiras, J. Phys. A, 28 (1995), 5633 | DOI | MR | Zbl

[24] K. Verkhoven, M. Muzette, R. Kont, TMF, 134:1 (2003), 128 | DOI | MR

[25] S. V. Manakov, ZhETF, 65 (1973), 505

[26] R. Garnier, Rend. Circ. Mat. Palermo, 43 (1919), 3559 | DOI

[27] S. Abenda, Yu. Federov, Acta Math. Appl., 50 (2000), 137 | DOI | MR

[28] M. Gürses, A. Karasu, Phys. Lett. A, 251 (1999), 247 | DOI | MR | Zbl

[29] C. M. Cosgrove, Stud. Appl. Math., 104 (2000), 1 | DOI | MR | Zbl

[30] C. Verhoeven, M. Musette, R. Conte, J. Math. Phys., 43 (2002), 1906 | DOI | MR | Zbl

[31] C. Verhoeven, Integration of Hamiltonian systems of Hénon–Heiles type their associated soliton equations, Thesis, Brussels, 2003