The Kerr Solution on Partially Degenerate Hyperelliptic Riemann Surfaces
Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 2, pp. 193-200 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Kerr solution for a rotating black hole can be constructed as the “solitonic” limit of Korotkin's theta-functional solutions of the Ernst equation on a genus-two surface. We show here that the Kerr solution can also be obtained on a partially degenerate hyperelliptic Riemann surface of arbitrary even genus.
Keywords: black holes, Riemann surfaces, solitonic limit.
@article{TMF_2003_137_2_a4,
     author = {C. Klein},
     title = {The {Kerr} {Solution} on {Partially} {Degenerate} {Hyperelliptic} {Riemann} {Surfaces}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {193--200},
     year = {2003},
     volume = {137},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_137_2_a4/}
}
TY  - JOUR
AU  - C. Klein
TI  - The Kerr Solution on Partially Degenerate Hyperelliptic Riemann Surfaces
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 193
EP  - 200
VL  - 137
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_137_2_a4/
LA  - ru
ID  - TMF_2003_137_2_a4
ER  - 
%0 Journal Article
%A C. Klein
%T The Kerr Solution on Partially Degenerate Hyperelliptic Riemann Surfaces
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 193-200
%V 137
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2003_137_2_a4/
%G ru
%F TMF_2003_137_2_a4
C. Klein. The Kerr Solution on Partially Degenerate Hyperelliptic Riemann Surfaces. Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 2, pp. 193-200. http://geodesic.mathdoc.fr/item/TMF_2003_137_2_a4/

[1] D. Kramer, Kh. Shtefani, M. Mak-Kallum, E. Kherlt, Tochnye resheniya uravneniya Einsheina, Energoizdat, M., 1982 | MR

[2] F. J. Ernst, Phys. Rev., 167 (1968), 1175 | DOI

[3] D. Maison, Phys. Rev. Lett., 41 (1978), 521 | DOI | MR

[4] V. A. Belinskii, V. E. Zakharov, ZhETF, 75:6 (1978), 1955 | MR

[5] D. A. Korotkin, TMF, 77:1 (1988), 25 | MR

[6] D. A. Korotkin, V. B. Matveev, Funkts. analiz i ego prilozh., 34:4 (2000), 18 | DOI | MR | Zbl

[7] C. Klein, O. Richter, Phys. Rev. D, 58 (1998), 124018 | DOI | MR

[8] C. Klein, Phys. Rev. D, 63 (2001), 064033 | DOI | MR

[9] E. D. Belokolos, A. I. Bobenko, V. Z. Enolskii, A. R. Its, V. B. Matveev, Algebro-Geometric Approach to Nonlinear Integrable Equations, Springer, Berlin, 1994

[10] D. Mamford, Lektsii o teta-funktsiyakh, Mir, M., 1988 | MR

[11] J. Fay, Theta-Functions on Riemann Surfaces, Lect. Notes Math., 352, Springer, Berlin, 1973 | DOI | MR | Zbl

[12] S. Hawking, G. Ellis, The Large Scale Structure of Space-Time, Cambridge Univ. Press, Cambridge, 1973 | MR | Zbl

[13] C. Klein, O. Richter, Phys. Rev. Lett., 83 (1999), 2884 | DOI