Tritronquée Solutions of Perturbed First Painlevé Equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 2, pp. 188-192
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider solutions of the class of ODEs $y''=6y^2-x^{\mu}$, which contains the first Painlevé equation $($PI$)$ for $\mu=1$. It is well known that PI has a unique real solution (called a tritronquйe solution) asymptotic to $-\sqrt{x/6}$ and decaying monotonically on the positive real line. We prove the existence and uniqueness of a corresponding solution for each real nonnegative $\mu\ne1$.
Mots-clés :
Painlevé equations.
@article{TMF_2003_137_2_a3,
author = {N. Joshi},
title = {Tritronqu\'ee {Solutions} of {Perturbed} {First} {Painlev\'e} {Equations}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {188--192},
year = {2003},
volume = {137},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2003_137_2_a3/}
}
N. Joshi. Tritronquée Solutions of Perturbed First Painlevé Equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 2, pp. 188-192. http://geodesic.mathdoc.fr/item/TMF_2003_137_2_a3/
[1] P. Boutroux, Ann. École Normale Sup., 30 (1913), 265–375 | MR
[2] N. Joshi, A. V. Kitaev, Stud. Appl. Math., 107 (2001), 253–291 | DOI | MR | Zbl
[3] N. Joshi, M. D. Kruskal, Stud. Appl. Math., 93 (1994), 187–207 | DOI | MR | Zbl
[4] W. R. Wasow, Asymptotic Expansions for Ordinary Differential Equations, Robert E. Krieger, Huntington, N. Y., 1976 | MR
[5] F. Olver, Asimptotika i spetsialnye funktsii, Nauka, M., 1990 | MR | Zbl