Tritronquée Solutions of Perturbed First Painlevé Equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 2, pp. 188-192 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider solutions of the class of ODEs $y''=6y^2-x^{\mu}$, which contains the first Painlevé equation $($PI$)$ for $\mu=1$. It is well known that PI has a unique real solution (called a tritronquйe solution) asymptotic to $-\sqrt{x/6}$ and decaying monotonically on the positive real line. We prove the existence and uniqueness of a corresponding solution for each real nonnegative $\mu\ne1$.
Mots-clés : Painlevé equations.
@article{TMF_2003_137_2_a3,
     author = {N. Joshi},
     title = {Tritronqu\'ee {Solutions} of {Perturbed} {First} {Painlev\'e} {Equations}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {188--192},
     year = {2003},
     volume = {137},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_137_2_a3/}
}
TY  - JOUR
AU  - N. Joshi
TI  - Tritronquée Solutions of Perturbed First Painlevé Equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 188
EP  - 192
VL  - 137
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_137_2_a3/
LA  - ru
ID  - TMF_2003_137_2_a3
ER  - 
%0 Journal Article
%A N. Joshi
%T Tritronquée Solutions of Perturbed First Painlevé Equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 188-192
%V 137
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2003_137_2_a3/
%G ru
%F TMF_2003_137_2_a3
N. Joshi. Tritronquée Solutions of Perturbed First Painlevé Equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 2, pp. 188-192. http://geodesic.mathdoc.fr/item/TMF_2003_137_2_a3/

[1] P. Boutroux, Ann. École Normale Sup., 30 (1913), 265–375 | MR

[2] N. Joshi, A. V. Kitaev, Stud. Appl. Math., 107 (2001), 253–291 | DOI | MR | Zbl

[3] N. Joshi, M. D. Kruskal, Stud. Appl. Math., 93 (1994), 187–207 | DOI | MR | Zbl

[4] W. R. Wasow, Asymptotic Expansions for Ordinary Differential Equations, Robert E. Krieger, Huntington, N. Y., 1976 | MR

[5] F. Olver, Asimptotika i spetsialnye funktsii, Nauka, M., 1990 | MR | Zbl