The Infinite-Genus Limit of the Whitham Equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 2, pp. 176-187 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We derive the infinite-genus limit of the KdV–Whitham equations based on the special scaling of the spectral curve introduced by Venakides in the study of the continuum limit of theta functions. The limit describes evolution of the integrated density of states in a one-dimensional soliton gas.
Keywords: finite-gap potentials, rotation number, thermodynamic limit.
@article{TMF_2003_137_2_a2,
     author = {G. A. El},
     title = {The {Infinite-Genus} {Limit} of the {Whitham} {Equations}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {176--187},
     year = {2003},
     volume = {137},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_137_2_a2/}
}
TY  - JOUR
AU  - G. A. El
TI  - The Infinite-Genus Limit of the Whitham Equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 176
EP  - 187
VL  - 137
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_137_2_a2/
LA  - ru
ID  - TMF_2003_137_2_a2
ER  - 
%0 Journal Article
%A G. A. El
%T The Infinite-Genus Limit of the Whitham Equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 176-187
%V 137
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2003_137_2_a2/
%G ru
%F TMF_2003_137_2_a2
G. A. El. The Infinite-Genus Limit of the Whitham Equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 2, pp. 176-187. http://geodesic.mathdoc.fr/item/TMF_2003_137_2_a2/

[1] G. B. Whitham, Proc. Roy. Soc. A, 283 (1965), 238 | DOI | MR | Zbl

[2] H. Flaschka, G. Forest, D. W. McLaughlin, Commun. Pure Appl. Math., 33 (1979), 739 | DOI | MR

[3] P. D. Lax, C. D. Levermore, Commun. Pure Appl. Math., 36 (1983), 253 ; 571 ; 809 | DOI | MR | Zbl | MR | Zbl | MR | Zbl

[4] S. Venakides, Trans. Am. Math. Soc., 301 (1987), 189 | DOI | MR | Zbl

[5] S. Venakides, Commun. Pure Appl. Math., 43 (1990), 335 | DOI | MR | Zbl

[6] P. Deift, S. Venakides, X. Zhou, Int. Math. Res. Not., 1997, no. 6, 285 | MR | Zbl

[7] S. Venakides, Commun. Pure Appl. Math., 42 (1989), 711 | DOI | MR | Zbl

[8] R. Johnson, J. Moser, Commun. Math. Phys., 84 (1982), 403 | DOI | MR | Zbl

[9] G. A. El, A. L. Krylov, S. A. Molchanov, S. Venakides, Physica D, 152–153 (2001), 653 | DOI | MR | Zbl

[10] V. E. Zakharov, ZhETF, 60 (1971), 993

[11] B. A. Dubrovin, S. P. Novikov, UMN, 44:6 (1989), 29 | MR | Zbl

[12] S. P. Novikov, Funkts. analiz i ego prilozh., 8:3 (1974), 54 | MR | Zbl

[13] P. D. Lax, Commun. Pure Appl. Math., 26 (1975), 141 | MR

[14] A. R. Its, V. B. Matveev, TMF, 23 (1975), 51 | MR

[15] M. I. Weinstein, J. B. Keller, SIAM J. Appl. Math., 47 (1987), 941 | DOI | MR | Zbl

[16] A. V. Gurevich, N. G. Mazur, K. P. Zubin, ZhETF, 117 (2000), 797 | MR

[17] A. L. Krylov, G. A. El, UMN, 54:2 (1999), 175 | DOI | MR | Zbl

[18] I. M. Krichever, Funkts. analiz i ego prilozh., 22:3 (1988), 37 | MR | Zbl

[19] G. A. El, “Algebro-geometrical solutions of the infinite-genus Whitham equations” (to appear)