Positon Solutions of the KdV Equation with Self-Consistent Sources
Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 2, pp. 309-320 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct a binary Darboux transformation with an arbitrary time function for the KdV equation with self-consistent sources. With this transformation, we obtain positon solutions of the KdV equation with self-consistent sources. We also discuss the properties of these solutions.
Keywords: KdV equation with self-consistent sources, binary Darboux transformation.
Mots-clés : positon
@article{TMF_2003_137_2_a14,
     author = {Y. B. Zeng and Y. J. Shao and W. M. Xue},
     title = {Positon {Solutions} of the {KdV} {Equation} with {Self-Consistent} {Sources}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {309--320},
     year = {2003},
     volume = {137},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_137_2_a14/}
}
TY  - JOUR
AU  - Y. B. Zeng
AU  - Y. J. Shao
AU  - W. M. Xue
TI  - Positon Solutions of the KdV Equation with Self-Consistent Sources
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 309
EP  - 320
VL  - 137
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_137_2_a14/
LA  - ru
ID  - TMF_2003_137_2_a14
ER  - 
%0 Journal Article
%A Y. B. Zeng
%A Y. J. Shao
%A W. M. Xue
%T Positon Solutions of the KdV Equation with Self-Consistent Sources
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 309-320
%V 137
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2003_137_2_a14/
%G ru
%F TMF_2003_137_2_a14
Y. B. Zeng; Y. J. Shao; W. M. Xue. Positon Solutions of the KdV Equation with Self-Consistent Sources. Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 2, pp. 309-320. http://geodesic.mathdoc.fr/item/TMF_2003_137_2_a14/

[1] V. K. Mel'nikov, Inverse Problems, 6 (1990), 233 | DOI | MR | Zbl

[2] V. K. Mel'nikov, Commun. Math. Phys., 120 (1989), 451 ; 126, 201 ; J. Math. Phys., 31 (1990), 1106 ; D. J. Kaup, Phys. Rev. Lett., 59 (1987), 2063 ; C. Claude, A. Latifi, J. Leon, J. Math. Phys., 32 (1991), 3321 ; Р. А. Власов, Е. В. Докторов, ДАН БССР, 26 (1991), 17; E. V. Doktorov, R. A. Vlasov, Opt. Acta, 30 (1993), 223 ; M. Nakazawa, E. Yomada, H. Kubota, Phys. Rev. Lett., 66 (1991), 2625 ; E. V. Doktorov, V. S. Shchesnovich, Phys. Lett. A, 207 (1995), 153 ; V. S. Shchesnovich, E. V. Doktorov, Phys. Lett. A, 213 (1996), 23 ; J. Leon, J. Math. Phys., 29 (1988), 2012 ; Phys. Lett. A, 144 (1990), 444 | DOI | MR | Zbl | DOI | Zbl | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl | DOI | DOI | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR

[3] J. Leon, A. Latifi, J. Phys. A, 23 (1990), 1385 | DOI | MR | Zbl

[4] Y. B. Zeng, Phys. A, 262 (1999), 405 | DOI | MR

[5] V. K. Mel'nikov, Phys. Lett. A, 133 (1988), 493 | DOI | MR

[6] R. L. Lin, Y. B. Zeng, W. X. Ma, Phys. A, 291 (2001), 287 | DOI | MR | Zbl

[7] V. B. Matveev, TMF, 131:1 (2002), 44 | DOI | MR | Zbl

[8] Q. P. Liu, M. Manas, J. Nonlinear Sci., 9 (1999), 213 ; M. Manas, A. Doliwa, P. M. Santini, Phys. Lett. A, 232 (1997), 99 | DOI | MR | DOI | MR | Zbl

[9] Y. B. Zeng, W. X. Ma, Y. J. Shao, J. Math. Phys., 42 (2001), 2113 | DOI | MR | Zbl

[10] V. B. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer, Berlin, 1991 | MR