The Kinematics of the Planar Motion of Ideal Fiber-Reinforced Fluids: An Integrable Reduction and Bдcklund Transformation
Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 2, pp. 281-292 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We establish that the kinematic constraints on the steady planar motion of an ideal fiber-reinforced fluid can be consolidated in a single third-order nonlinear equation. Remarkably, this equation admits a solitonic reduction related to the classical sine-Gordon equation. The kinematic conditions in this case admit a novel duality property and a Bäcklund transformation.
Keywords: kinematics, fiber-reinforced materials, Bäcklund transformation.
@article{TMF_2003_137_2_a12,
     author = {C. Rogers and W. K. Schief},
     title = {The {Kinematics} of the {Planar} {Motion} of {Ideal} {Fiber-Reinforced} {Fluids:} {An} {Integrable} {Reduction} and {B{\cyrd}cklund} {Transformation}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {281--292},
     year = {2003},
     volume = {137},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_137_2_a12/}
}
TY  - JOUR
AU  - C. Rogers
AU  - W. K. Schief
TI  - The Kinematics of the Planar Motion of Ideal Fiber-Reinforced Fluids: An Integrable Reduction and Bдcklund Transformation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 281
EP  - 292
VL  - 137
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_137_2_a12/
LA  - ru
ID  - TMF_2003_137_2_a12
ER  - 
%0 Journal Article
%A C. Rogers
%A W. K. Schief
%T The Kinematics of the Planar Motion of Ideal Fiber-Reinforced Fluids: An Integrable Reduction and Bдcklund Transformation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 281-292
%V 137
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2003_137_2_a12/
%G ru
%F TMF_2003_137_2_a12
C. Rogers; W. K. Schief. The Kinematics of the Planar Motion of Ideal Fiber-Reinforced Fluids: An Integrable Reduction and Bдcklund Transformation. Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 2, pp. 281-292. http://geodesic.mathdoc.fr/item/TMF_2003_137_2_a12/

[1] A. J. M. Spencer, Deformations of Fibre-Reinforced Materials, Oxford Sci. Research Papers, Clarendon, London; Oxford Univ. Press, 1972 | Zbl

[2] B. D. Hull, T. G. Rogers, A. J. M. Spencer, “Theoretical analysis of forming flows of continuous fibre-resin systems”, Flow and Rheology in Polymer Composites Manufacturing, ed. S. G. Advani, Elsevier, Amsterdam, 1994, 203–256

[3] A. J. M. Spencer, European J. Appl. Math., 8 (1997), 209–215 | MR | Zbl

[4] W. K. Schief, C. Rogers, “The kinematics of fibre-reinforced fluids. An integrable reduction”, Quart. J. Mech. Appl. Math. (to appear) | MR

[5] C. Rogers, W. K. Schief, Bäcklund and Darboux Transformations. Geometry and Modern Applications in Soliton Theory, Cambridge Texts in Applied Mathematics, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl

[6] L. P. Eisenhart, A Treatise on the Differential Geometry of Curves and Surfaces, Dover, New York, 1960 | MR

[7] A. Sym, “Soliton surfaces and their applications”, Geometric Aspects of the Einstein Equations and Integrable Systems, Proc 6th Conf. (Scheveningen/Neth., 1984), Lect. Notes Phys., 239, ed. R. Martini, Springer, Berlin, 1985, 154–231 | DOI | MR

[8] A. C. Pipkin, T. G. Rogers, J. Appl. Mech., 38 (1971), 634–640 | DOI | Zbl

[9] F. C. Frank, J. H. van der Merwe, Proc. Roy. Soc. London A, 200 (1949), 125–134 | DOI | Zbl

[10] A. Seeger, H. Donth, A. Kochendörfer, Z. Phys., 134 (1953), 173–193 | DOI | MR | Zbl