Equivalence Groups for First-Order Balance Equations and Applications to Electromagnetism
Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 2, pp. 271-280
Cet article a éte moissonné depuis la source Math-Net.Ru
We investigate the groups of equivalence transformations for first-order balance equations involving an arbitrary number of dependent and independent variables. We obtain the determining equations and find their explicit solutions. The approach to this problem is based on a geometric method that depends on Cartan's exterior differential forms. The general solutions of the determining equations for equivalence transformations for first-order systems are applied to a class of the Maxwell equations of electrodynamics.
Keywords:
equivalence groups, isovector method, Maxwell equations.
Mots-clés : balance equations
Mots-clés : balance equations
@article{TMF_2003_137_2_a11,
author = {S. \"Ozer and E. Suhubi},
title = {Equivalence {Groups} for {First-Order} {Balance} {Equations} and {Applications} to {Electromagnetism}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {271--280},
year = {2003},
volume = {137},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2003_137_2_a11/}
}
TY - JOUR AU - S. Özer AU - E. Suhubi TI - Equivalence Groups for First-Order Balance Equations and Applications to Electromagnetism JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2003 SP - 271 EP - 280 VL - 137 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2003_137_2_a11/ LA - ru ID - TMF_2003_137_2_a11 ER -
S. Özer; E. Suhubi. Equivalence Groups for First-Order Balance Equations and Applications to Electromagnetism. Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 2, pp. 271-280. http://geodesic.mathdoc.fr/item/TMF_2003_137_2_a11/
[1] E. Kartan, Vneshnie differentsialnye formy i ikh geometricheskie prilozheniya, Izd-vo MGU, M., 1962
[2] B. K. Harrison, F. B. Estabrook, J. Math. Phys., 12 (1971), 653 | DOI | MR | Zbl
[3] D. G. B. Edelen, Applied Exterior Calculus, Wiley, New York, 1985 ; Isovector Methods for Equations of Balance, Noordhoff, Alphen aan den Rijn, 1980 | MR | Zbl | Zbl
[4] E. S. Şuhubi, Internat. J. Engrg. Sci., 29 (1991), 133 ; 37 (1999), 1901 ; 38 (2000), 715 | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl