Extended Rotation and Scaling Groups for Nonlinear Evolution Equations
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 1, pp. 74-86
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A $(1+1)$-dimensional nonlinear evolution equation is invariant under the rotation group if it is invariant under the infinitesimal generator $V=x\partial_u-u\partial_x$. Then the solution satisfies the condition $u_x=-x/u$. For equations that do not admit the rotation group, we provide an extension of the rotation group. The corresponding exact solution can be constructed via the invariant set $R_0=\{u:u_x=x F(u)\}$ of a contact first-order differential structure, where $F$ is a smooth function to be determined. The time evolution on $R_0$ is shown to be governed by a first-order dynamical system. We introduce an extension of the scaling groups characterized by an invariant set  that depends on two constants $\epsilon$ and $n\ne1$. When $\epsilon=0$, it reduces to the invariant set $S_0$ introduced by Galaktionov. We also introduce a generalization of both the scaling and rotation groups, which is described by an invariant set $E_0$ with parameters $a$ and $b$. When $a=0$ or $b=0$, it respectively reduces to $R_0$ or $S_0$. These approaches are used to obtain exact solutions and reductions of dynamical systems of nonlinear evolution equations.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
differential evolution equations, scaling group.
Mots-clés : rotation group
                    
                  
                
                
                Mots-clés : rotation group
@article{TMF_2003_137_1_a8,
     author = {P. G. Estevez and C. Qu},
     title = {Extended {Rotation} and {Scaling} {Groups} for {Nonlinear} {Evolution} {Equations}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {74--86},
     publisher = {mathdoc},
     volume = {137},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_137_1_a8/}
}
                      
                      
                    TY - JOUR AU - P. G. Estevez AU - C. Qu TI - Extended Rotation and Scaling Groups for Nonlinear Evolution Equations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2003 SP - 74 EP - 86 VL - 137 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2003_137_1_a8/ LA - ru ID - TMF_2003_137_1_a8 ER -
P. G. Estevez; C. Qu. Extended Rotation and Scaling Groups for Nonlinear Evolution Equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 1, pp. 74-86. http://geodesic.mathdoc.fr/item/TMF_2003_137_1_a8/
