Extended Rotation and Scaling Groups for Nonlinear Evolution Equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 1, pp. 74-86 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A $(1+1)$-dimensional nonlinear evolution equation is invariant under the rotation group if it is invariant under the infinitesimal generator $V=x\partial_u-u\partial_x$. Then the solution satisfies the condition $u_x=-x/u$. For equations that do not admit the rotation group, we provide an extension of the rotation group. The corresponding exact solution can be constructed via the invariant set $R_0=\{u:u_x=x F(u)\}$ of a contact first-order differential structure, where $F$ is a smooth function to be determined. The time evolution on $R_0$ is shown to be governed by a first-order dynamical system. We introduce an extension of the scaling groups characterized by an invariant set that depends on two constants $\epsilon$ and $n\ne1$. When $\epsilon=0$, it reduces to the invariant set $S_0$ introduced by Galaktionov. We also introduce a generalization of both the scaling and rotation groups, which is described by an invariant set $E_0$ with parameters $a$ and $b$. When $a=0$ or $b=0$, it respectively reduces to $R_0$ or $S_0$. These approaches are used to obtain exact solutions and reductions of dynamical systems of nonlinear evolution equations.
Keywords: differential evolution equations, scaling group.
Mots-clés : rotation group
@article{TMF_2003_137_1_a8,
     author = {P. G. Estevez and C. Qu},
     title = {Extended {Rotation} and {Scaling} {Groups} for {Nonlinear} {Evolution} {Equations}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {74--86},
     year = {2003},
     volume = {137},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_137_1_a8/}
}
TY  - JOUR
AU  - P. G. Estevez
AU  - C. Qu
TI  - Extended Rotation and Scaling Groups for Nonlinear Evolution Equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 74
EP  - 86
VL  - 137
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_137_1_a8/
LA  - ru
ID  - TMF_2003_137_1_a8
ER  - 
%0 Journal Article
%A P. G. Estevez
%A C. Qu
%T Extended Rotation and Scaling Groups for Nonlinear Evolution Equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 74-86
%V 137
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2003_137_1_a8/
%G ru
%F TMF_2003_137_1_a8
P. G. Estevez; C. Qu. Extended Rotation and Scaling Groups for Nonlinear Evolution Equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 1, pp. 74-86. http://geodesic.mathdoc.fr/item/TMF_2003_137_1_a8/

[1] G. W. Bluman, S. Kumei, Symmetries and Differential Equations, Springer, New York, 1989 ; P. Olver, Applications of Lie Groups to Differential Equations, Springer, New York, 1993 | MR | Zbl | MR

[2] G. W. Bluman, J. D. Cole, J. Math. Mech., 18 (1969), 1025–1042 ; P. A. Clarkson, E. L. Mansfield, Phys. D, 70 (1993), 250–288 ; P. A. Clarkson, Chaos Solitons Fractals, 5 (1995), 2261–2301 ; D. J. Arrigo, P. Broadbridge, J. M. Hill, IMA J. Appl. Math., 52 (1994), 1–24 ; P. G. Estevez, J. Phys. A, 27 (1994), 2113–2127 ; P. G. Estevez, P. R. Gordoa, Stud. Appl. Math., 95 (1995), 73–113 ; M. C. Nucci, Phys. D, 7 (1994), 124–134 ; E. Pucci, J. Phys. A, 25 (1992), 2631–2640 | MR | Zbl | DOI | MR | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl

[3] A. S. Fokas, Q. M. Liu, Phys. Rev. Lett., 72 (1994), 3293–3296 ; R. Z. Zhdanov, J. Phys. A, 28 (1995), 3841–3850 ; C. Z. Qu, Stud. Appl. Math., 99 (1997), 107–136 ; IMA J. Appl. Math., 62 (1999), 283–302 ; Nonlinear Anal., 42 (2000), 301–327 ; C. Z. Qu, S. L. Zhang, R. C. Liu, Phys. D, 144 (2000), 97–123 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | DOI | MR | DOI | MR | DOI | MR | Zbl

[4] P. A. Clarkson, M. D. Kruskal, J. Math. Phys., 30 (1989), 2201–2213 ; P. A. Clarkson, European J. Appl. Math., 1 (1990), 279–300 ; S. Y. Lou, Phys. Lett. A, 151 (1990), 133–135 ; P. G. Estevez, Phys. Lett. A, 171 (1992), 259–261 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | DOI | MR

[5] P. J. Olver, P. Rosenau, Phys. Lett. A, 114 (1986), 107–112 ; SIAM J. Appl. Math., 47 (1987), 263–275 | DOI | MR | Zbl | DOI | MR

[6] V. A. Galaktionov, Nonlinear Anal., 23 (1994), 1595–1621 | DOI | MR | Zbl

[7] V. A. Galaktionov, Proc. Roy. Soc. Edinburgh A, 125 (1995), 225–246 ; V. A. Galaktionov, S. A. Posashkov, Phys. D, 99 (1996), 217–236 | DOI | MR | Zbl | DOI | MR | Zbl

[8] V. A. Galaktionov, “Groups of scalings and invariant sets for higher-order nonlinear evolution equations”, Differ. Integral Eq. (to appear) | MR | Zbl

[9] V. A. Galaktionov, “Ordered invariant sets for nonlinear evolution equtaions of KdV-type”, Comput. Math. Math. Phys. (to appear) | MR | Zbl

[10] J. R. King, Phys. D, 63 (1993), 35–65 | DOI