Extended Rotation and Scaling Groups for Nonlinear Evolution Equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 1, pp. 74-86

Voir la notice de l'article provenant de la source Math-Net.Ru

A $(1+1)$-dimensional nonlinear evolution equation is invariant under the rotation group if it is invariant under the infinitesimal generator $V=x\partial_u-u\partial_x$. Then the solution satisfies the condition $u_x=-x/u$. For equations that do not admit the rotation group, we provide an extension of the rotation group. The corresponding exact solution can be constructed via the invariant set $R_0=\{u:u_x=x F(u)\}$ of a contact first-order differential structure, where $F$ is a smooth function to be determined. The time evolution on $R_0$ is shown to be governed by a first-order dynamical system. We introduce an extension of the scaling groups characterized by an invariant set that depends on two constants $\epsilon$ and $n\ne1$. When $\epsilon=0$, it reduces to the invariant set $S_0$ introduced by Galaktionov. We also introduce a generalization of both the scaling and rotation groups, which is described by an invariant set $E_0$ with parameters $a$ and $b$. When $a=0$ or $b=0$, it respectively reduces to $R_0$ or $S_0$. These approaches are used to obtain exact solutions and reductions of dynamical systems of nonlinear evolution equations.
Keywords: differential evolution equations, scaling group.
Mots-clés : rotation group
@article{TMF_2003_137_1_a8,
     author = {P. G. Estevez and C. Qu},
     title = {Extended {Rotation} and {Scaling} {Groups} for {Nonlinear} {Evolution} {Equations}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {74--86},
     publisher = {mathdoc},
     volume = {137},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_137_1_a8/}
}
TY  - JOUR
AU  - P. G. Estevez
AU  - C. Qu
TI  - Extended Rotation and Scaling Groups for Nonlinear Evolution Equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 74
EP  - 86
VL  - 137
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_137_1_a8/
LA  - ru
ID  - TMF_2003_137_1_a8
ER  - 
%0 Journal Article
%A P. G. Estevez
%A C. Qu
%T Extended Rotation and Scaling Groups for Nonlinear Evolution Equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 74-86
%V 137
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2003_137_1_a8/
%G ru
%F TMF_2003_137_1_a8
P. G. Estevez; C. Qu. Extended Rotation and Scaling Groups for Nonlinear Evolution Equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 1, pp. 74-86. http://geodesic.mathdoc.fr/item/TMF_2003_137_1_a8/