The Discrete KP and KdV Equations over Finite Fields
Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 1, pp. 66-73
We propose an algebro-geometric method for constructing solutions of the discrete KP equation over a finite field. We also perform the corresponding reduction to the finite-field version of the discrete KdV equation. We write formulas that allow constructing multisoliton solutions of the equations starting from vacuum wave functions on an arbitrary nonsingular curve.
Keywords:
integrable systems, cellular automata, finite fields.
@article{TMF_2003_137_1_a7,
author = {M. Bialecki and A. Doliwa},
title = {The {Discrete} {KP} and {KdV} {Equations} over {Finite} {Fields}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {66--73},
year = {2003},
volume = {137},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2003_137_1_a7/}
}
M. Bialecki; A. Doliwa. The Discrete KP and KdV Equations over Finite Fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 1, pp. 66-73. http://geodesic.mathdoc.fr/item/TMF_2003_137_1_a7/
[1] R. Hirota, J. Phys. Soc. Japan, 50 (1981), 3785–3791 | DOI | MR
[2] R. Hirota, J. Phys. Soc. Japan, 43 (1977), 1424–1433 | DOI | MR | Zbl
[3] A. Doliwa, M. Białecki, P. Klimczewski, J. Phys. A, 26 (2003), 4827–4839 | DOI | MR
[4] I. M. Krichever, UMN, 33 (1978), 215–216 | MR | Zbl
[5] I. M. Krichever, P. Wiegmann, A. Zabrodin, Commun. Math. Phys., 193 (1998), 373–396 | DOI | MR | Zbl
[6] H. Stichtenoth, Algebraic Function Fields and Codes, Springer, Berlin, 1993 | MR | Zbl
[7] S. Leng, Algebra, Mir, M., 1968
[8] M. Białecki, A. Doliwa, Algebro-geometric solution of the discrete KP equation over a finite field out of a hyperbolic curve, E-print nlin.SI/0309071 | MR