Geometry of Submanifolds Derived from $\operatorname{Spin}$-Valued Spectral Problems
Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 1, pp. 47-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present recent results motivated by Sym's theory of soliton surfaces. Quite general assumptions about the structure of the spectral problem can lead to some specific classes of surfaces. In some cases (including pseudospherical surfaces), this approach is coordinate-independent, which seems a surprising novelty. The Darboux–Bäcklund transformation is formulated in terms of Clifford numbers, which greatly simplifies constructing explicit solutions. Cumbersome computations in matrix representations are replaced with rotations represented by elements of an appropriate $\operatorname{Spin}$ group. Finally, the spectral problem and the spectral parameter are derived purely geometrically in the case of isometric immersions of constant-curvature spaces in spheres and Euclidean spaces.
Mots-clés : soliton surfaces
Keywords: Darboux–Bäcklund transformation, Clifford algebra, $\operatorname{Spin}$ group.
@article{TMF_2003_137_1_a5,
     author = {J. L. Cieslinski},
     title = {Geometry of {Submanifolds} {Derived} from $\operatorname{Spin}${-Valued} {Spectral} {Problems}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {47--58},
     year = {2003},
     volume = {137},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_137_1_a5/}
}
TY  - JOUR
AU  - J. L. Cieslinski
TI  - Geometry of Submanifolds Derived from $\operatorname{Spin}$-Valued Spectral Problems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 47
EP  - 58
VL  - 137
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_137_1_a5/
LA  - ru
ID  - TMF_2003_137_1_a5
ER  - 
%0 Journal Article
%A J. L. Cieslinski
%T Geometry of Submanifolds Derived from $\operatorname{Spin}$-Valued Spectral Problems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 47-58
%V 137
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2003_137_1_a5/
%G ru
%F TMF_2003_137_1_a5
J. L. Cieslinski. Geometry of Submanifolds Derived from $\operatorname{Spin}$-Valued Spectral Problems. Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 1, pp. 47-58. http://geodesic.mathdoc.fr/item/TMF_2003_137_1_a5/

[1] A. Sym, Lett. Nuovo Cimento, 33 (1982), 394–400 ; 41 (1984), 353–360 | DOI | MR | DOI | MR

[2] A. Sym, “Soliton surfaces and their application: Soliton geometry from spectral problems”, Geometric Aspects of the Einstein Equations and Integrable Systems, Lect. Notes Phys., 239, ed. R. Martini, Springer, Berlin, 1985, 154–231 | DOI | MR

[3] A. I. Bobenko, “Surfaces in terms of 2 by 2 matrices: Old and new integrable cases”, Harmonic Maps and Integrable Systems, Aspects Math., 23, eds. A. P. Fordy, J. C. Wood, Vieweg, Brunswick, 1994, 83–128 ; J. Cieśliński, J. Math. Phys., 38 (1997), 4255–4272 ; “The Darboux–Bianchi–Bäcklund transformations and soliton surfaces”, Nonlinearity and Geometry, eds. D. Wójcik, J. Cieśliński, PWN, Warsaw, 1998, 81–107 ; R. K. Dodd, Commun. Math. Phys., 197 (1998), 641–665 ; A. S. Fokas, I. M. Gel'fand, F. Finkel, Q. M. Liu, Sel. Math., New Ser., 6:4 (2000), 347–375 | DOI | MR | DOI | MR | Zbl | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[4] J. L. Cieśliński, Phys. Lett. A, 267 (2000), 251–255 | DOI | MR | Zbl

[5] J. L. Cieśliński, J. Phys. A, 36 (2003), 6423–6440 | DOI | MR | Zbl

[6] A. Sym, Lett. Nuovo Cimento, 36 (1983), 307–312 | DOI | MR

[7] D. Levi, A. Sym, Phys. Lett. A, 149 (1990), 381–387 ; W. K. Schief, C. Rogers, M. E. Johnston, Chaos Solitons Fractals, 5 (1995), 25–34 ; J. Tafel, J. Geom. Phys., 17 (1995), 381–390 ; Д. А. Короткин, Зап. научн. семин. ПОМИ, 234, 1996, 65–124 | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl | Zbl

[8] P. Budinich, A. Trautman, The Spinorial Chessboard, Springer, Berlin, 1988 | MR | Zbl

[9] J. Cieśliński, P. Goldstein, A. Sym, Phys. Lett. A, 205 (1995), 37–43 | DOI | MR | Zbl

[10] J. Cieśliński, Adv. Appl. Clifford Algebras, 7 (1997), 133–139 ; Rend. Sem. Mat. Messina, Proc. Suppl. Messina Conf. (1998), 2000, 135–147 | DOI | MR | Zbl | Zbl

[11] W. Biernacki, J. L. Cieśliński, Phys. Lett. A, 288 (2001), 167–172 | DOI | MR | Zbl

[12] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: Metod obratnoi zadachi, Nauka, M., 1980 ; V. E. Zakharov, A. V. Mikhailov, Commun. Math. Phys., 74 (1980), 21–40 ; V. B. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer, Berlin, 1991 ; R. Meinel, G. Neugebauer, H. Steudel, Solitonen\rom: Nichtlineare Strukturen, Academie, Berlin, 1991 ; C.-H. Gu, “Bäcklund transformations and Darboux transformations”, Soliton Theory and Its Applications, ed. C.-H. Gu, Springer, Berlin, 1995, 122–151 ; J. Cieśliński, J. Math. Phys., 36 (1995), 5670–5706 | MR | DOI | MR | MR | Zbl | MR | MR | DOI | MR | Zbl

[13] J. L. Cieśliński, J. Phys. A, 33 (2000), L363–L368 | DOI | MR | Zbl

[14] J. Cieśliński, Differ. Geom. Appl., 7 (1997), 1–28 | DOI | MR | Zbl

[15] A. Doliwa, P. M. Santini, J. Math. Phys., 36 (1995), 1259–1273 | DOI | MR | Zbl

[16] J. L. Cieśliński, Yu. A. Aminov, J. Phys. A, 34 (2001), L153–L159 | DOI | MR | Zbl

[17] K. Tenenblat, C. L. Terng, Ann. Math., 111 (1980), 477–490 | DOI | MR | Zbl

[18] Yu. A. Aminov, Matem. sb. Nov. ser., 111(153) (1980), 402–433 | MR | Zbl

[19] M. J. Ablowitz, R. Beals, K. Tenenblat, Stud. Appl. Math., 74 (1986), 177–203 | DOI | MR | Zbl

[20] J. Cieśliński, Phys. Lett. A, 236 (1997), 425–430 | DOI | MR | Zbl