Keywords: Darboux–Bäcklund transformation, Clifford algebra, $\operatorname{Spin}$ group.
@article{TMF_2003_137_1_a5,
author = {J. L. Cieslinski},
title = {Geometry of {Submanifolds} {Derived} from $\operatorname{Spin}${-Valued} {Spectral} {Problems}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {47--58},
year = {2003},
volume = {137},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2003_137_1_a5/}
}
J. L. Cieslinski. Geometry of Submanifolds Derived from $\operatorname{Spin}$-Valued Spectral Problems. Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 1, pp. 47-58. http://geodesic.mathdoc.fr/item/TMF_2003_137_1_a5/
[1] A. Sym, Lett. Nuovo Cimento, 33 (1982), 394–400 ; 41 (1984), 353–360 | DOI | MR | DOI | MR
[2] A. Sym, “Soliton surfaces and their application: Soliton geometry from spectral problems”, Geometric Aspects of the Einstein Equations and Integrable Systems, Lect. Notes Phys., 239, ed. R. Martini, Springer, Berlin, 1985, 154–231 | DOI | MR
[3] A. I. Bobenko, “Surfaces in terms of 2 by 2 matrices: Old and new integrable cases”, Harmonic Maps and Integrable Systems, Aspects Math., 23, eds. A. P. Fordy, J. C. Wood, Vieweg, Brunswick, 1994, 83–128 ; J. Cieśliński, J. Math. Phys., 38 (1997), 4255–4272 ; “The Darboux–Bianchi–Bäcklund transformations and soliton surfaces”, Nonlinearity and Geometry, eds. D. Wójcik, J. Cieśliński, PWN, Warsaw, 1998, 81–107 ; R. K. Dodd, Commun. Math. Phys., 197 (1998), 641–665 ; A. S. Fokas, I. M. Gel'fand, F. Finkel, Q. M. Liu, Sel. Math., New Ser., 6:4 (2000), 347–375 | DOI | MR | DOI | MR | Zbl | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[4] J. L. Cieśliński, Phys. Lett. A, 267 (2000), 251–255 | DOI | MR | Zbl
[5] J. L. Cieśliński, J. Phys. A, 36 (2003), 6423–6440 | DOI | MR | Zbl
[6] A. Sym, Lett. Nuovo Cimento, 36 (1983), 307–312 | DOI | MR
[7] D. Levi, A. Sym, Phys. Lett. A, 149 (1990), 381–387 ; W. K. Schief, C. Rogers, M. E. Johnston, Chaos Solitons Fractals, 5 (1995), 25–34 ; J. Tafel, J. Geom. Phys., 17 (1995), 381–390 ; Д. А. Короткин, Зап. научн. семин. ПОМИ, 234, 1996, 65–124 | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl | Zbl
[8] P. Budinich, A. Trautman, The Spinorial Chessboard, Springer, Berlin, 1988 | MR | Zbl
[9] J. Cieśliński, P. Goldstein, A. Sym, Phys. Lett. A, 205 (1995), 37–43 | DOI | MR | Zbl
[10] J. Cieśliński, Adv. Appl. Clifford Algebras, 7 (1997), 133–139 ; Rend. Sem. Mat. Messina, Proc. Suppl. Messina Conf. (1998), 2000, 135–147 | DOI | MR | Zbl | Zbl
[11] W. Biernacki, J. L. Cieśliński, Phys. Lett. A, 288 (2001), 167–172 | DOI | MR | Zbl
[12] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: Metod obratnoi zadachi, Nauka, M., 1980 ; V. E. Zakharov, A. V. Mikhailov, Commun. Math. Phys., 74 (1980), 21–40 ; V. B. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer, Berlin, 1991 ; R. Meinel, G. Neugebauer, H. Steudel, Solitonen\rom: Nichtlineare Strukturen, Academie, Berlin, 1991 ; C.-H. Gu, “Bäcklund transformations and Darboux transformations”, Soliton Theory and Its Applications, ed. C.-H. Gu, Springer, Berlin, 1995, 122–151 ; J. Cieśliński, J. Math. Phys., 36 (1995), 5670–5706 | MR | DOI | MR | MR | Zbl | MR | MR | DOI | MR | Zbl
[13] J. L. Cieśliński, J. Phys. A, 33 (2000), L363–L368 | DOI | MR | Zbl
[14] J. Cieśliński, Differ. Geom. Appl., 7 (1997), 1–28 | DOI | MR | Zbl
[15] A. Doliwa, P. M. Santini, J. Math. Phys., 36 (1995), 1259–1273 | DOI | MR | Zbl
[16] J. L. Cieśliński, Yu. A. Aminov, J. Phys. A, 34 (2001), L153–L159 | DOI | MR | Zbl
[17] K. Tenenblat, C. L. Terng, Ann. Math., 111 (1980), 477–490 | DOI | MR | Zbl
[18] Yu. A. Aminov, Matem. sb. Nov. ser., 111(153) (1980), 402–433 | MR | Zbl
[19] M. J. Ablowitz, R. Beals, K. Tenenblat, Stud. Appl. Math., 74 (1986), 177–203 | DOI | MR | Zbl
[20] J. Cieśliński, Phys. Lett. A, 236 (1997), 425–430 | DOI | MR | Zbl