Extended Toda Lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 1, pp. 40-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce nonlocal flows that commute with those of the classical Toda hierarchy. We define a logarithm of the difference Lax operator and use it to obtain a Lax representation of the new flows.
Keywords: Toda lattice, logarithm of a difference operator, Lax representation, bi-Hamiltonian formalism.
@article{TMF_2003_137_1_a4,
     author = {G. Carlet},
     title = {Extended {Toda} {Lattice}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {40--46},
     year = {2003},
     volume = {137},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_137_1_a4/}
}
TY  - JOUR
AU  - G. Carlet
TI  - Extended Toda Lattice
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 40
EP  - 46
VL  - 137
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_137_1_a4/
LA  - ru
ID  - TMF_2003_137_1_a4
ER  - 
%0 Journal Article
%A G. Carlet
%T Extended Toda Lattice
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 40-46
%V 137
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2003_137_1_a4/
%G ru
%F TMF_2003_137_1_a4
G. Carlet. Extended Toda Lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 1, pp. 40-46. http://geodesic.mathdoc.fr/item/TMF_2003_137_1_a4/

[1] G. Carlet, B. Dubrovin, Y. Zhang, “Extended Toda hierarchy”, Mosc. Math. J., 4:2 (2004), 313–332 | MR | Zbl

[2] M. Toda, J. Phys. Soc. Japan, 23 (1967), 501 ; Progr. Theor. Phys. Suppl., 1970, no. 45, 174 | DOI | DOI

[3] H. Flaschka, Progr. Theor. Phys., 51 (1974), 703 | DOI | MR | Zbl

[4] B. A. Dubrovin, V. B. Matveev, S. P. Novikov, UMN, 31:1 (1976), 55 ; E. Date, S. Tanaka, Progr. Theor. Phys., 55 (1976), 457 ; Progr. Theor. Phys. Suppl., 59 (1976), 107 ; И. М. Кричевер, УМН, 33:4 (1978), 215 | MR | Zbl | DOI | MR | Zbl | DOI | MR | MR | Zbl

[5] E. Getzler, The equivariant Toda lattice, I, E-print math.AG/0207025 | MR

[6] K. Takasaki, T. Takebe, Lett. Math. Phys., 28:3 (1993), 165 | DOI | MR | Zbl

[7] B. A. Kupershmidt, Astérisque, 123, 1985, 1 | MR

[8] F. Magri, J. Math. Phys., 19:5 (1978), 1156 | DOI | MR | Zbl

[9] T. Eguchi, S.-K. Yang, Mod. Phys. Lett. A, 9 (1994), 2893 | DOI | MR | Zbl

[10] B. Dubrovin, Nucl. Phys. B, 379 (1992), 627 | DOI | MR

[11] B. Dubrovin, Y. Zhang, Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov–Witten invariants, E-print math.DG/0108160

[12] Y. Zhang, J. Geom. Phys., 40 (2002), 215 ; E. Getzler, “The Toda conjecture”, Symplectic Geometry and Mirror Symmetry, Proc. of the 4th KIAS Annual Int. Conf. (Seoul, South Korea, August 14–18, 2000), eds. K. Fukaya, Y.-G. Oh, K. Ono, G. Tian, World Scientific, River Edge, N J, 2001, 51 ; E-print math.AG/0108108 | DOI | MR | Zbl | DOI | MR | Zbl

[13] K. Ueno, K. Takasaki, “Toda lattice hierarchy”, Group Representations and Systems of Differential Equations, Proc. of a Symp. (Tokyo, December 20–27, 1982), Adv. Stud. Pure Math., 4, ed. K. Okamoto, Kinokuniya, Tokyo ; North-Holland, Amsterdam, 1984, 1 | MR | Zbl