@article{TMF_2003_137_1_a3,
author = {M. S. Bruz\'on and M. L. Gandarias and C. Muriel and J. Ram{\'\i}res and F. R. Romero},
title = {Traveling-Wave {Solutions} of the {Schwarz{\textendash}Korteweg{\textendash}de} {Vries} {Equation} in $2+1$ {Dimensions} and the {Ablowitz{\textendash}Kaup{\textendash}Newell{\textendash}Segur} {Equation} {Through} {Symmetry} {Reductions}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {27--39},
year = {2003},
volume = {137},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2003_137_1_a3/}
}
TY - JOUR AU - M. S. Bruzón AU - M. L. Gandarias AU - C. Muriel AU - J. Ramíres AU - F. R. Romero TI - Traveling-Wave Solutions of the Schwarz–Korteweg–de Vries Equation in $2+1$ Dimensions and the Ablowitz–Kaup–Newell–Segur Equation Through Symmetry Reductions JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2003 SP - 27 EP - 39 VL - 137 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2003_137_1_a3/ LA - ru ID - TMF_2003_137_1_a3 ER -
%0 Journal Article %A M. S. Bruzón %A M. L. Gandarias %A C. Muriel %A J. Ramíres %A F. R. Romero %T Traveling-Wave Solutions of the Schwarz–Korteweg–de Vries Equation in $2+1$ Dimensions and the Ablowitz–Kaup–Newell–Segur Equation Through Symmetry Reductions %J Teoretičeskaâ i matematičeskaâ fizika %D 2003 %P 27-39 %V 137 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2003_137_1_a3/ %G ru %F TMF_2003_137_1_a3
M. S. Bruzón; M. L. Gandarias; C. Muriel; J. Ramíres; F. R. Romero. Traveling-Wave Solutions of the Schwarz–Korteweg–de Vries Equation in $2+1$ Dimensions and the Ablowitz–Kaup–Newell–Segur Equation Through Symmetry Reductions. Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 1, pp. 27-39. http://geodesic.mathdoc.fr/item/TMF_2003_137_1_a3/
[1] E. Hille, Analytic Function Theory, V. 2, Ginn, Boston, 1962 ; H. Schwerdtfeger, Geometry of Complex Numbers, Dover, New York, 1979 | MR | Zbl | MR | Zbl
[2] I. M. Krichever, S. P. Novikov, UMN, 35:6 (1980), 47 | MR | Zbl
[3] J. Weiss, J. Math. Phys., 24 (1983), 1405 ; 26, 258 | DOI | MR | Zbl | DOI | Zbl
[4] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, Stud. Appl. Math., 53 (1974), 249 | DOI | MR | Zbl
[5] B. Gambier, Acta Math., 33 (1909), 1 ; P. Painlevé, Bull. Soc. Math. France, 28 (1900), 201 ; Acta Math., 25 (1902), 1 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR
[6] M. J. Ablowitz, A. Ramani, H. Segur, Lett. Nuovo Cimento, 23 (1978), 333 | DOI | MR
[7] R. Conte (ed.), The Painlevé Property\rom: One Century Later, CRM Ser. Math. Phys., Springer, New York, 1999 | MR
[8] M. J. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981 | MR | Zbl
[9] F. Nijhoff, “On some “Schwarzian” equations and their discrete analogues”, Algebraic Aspects of Integrable Systems, In Memory of Irene Dorfman, Prog. Nonlinear Differ. Eq. Appl., 26, eds. A. S. Fokas et al., Birkhäuser, Boston, MA, 1997, 237 | MR | Zbl
[10] K. Toda, S. Yu, J. Math. Phys., 41 (2000), 4747 | DOI | MR | Zbl
[11] J. Weiss, J. M. Tabor, G. Carnevale, J. Math Phys., 24 (1983), 522 | DOI | MR | Zbl
[12] D. David, N. Kamran, D. Levi, P. Winternitz, J. Math. Phys., 27 (1986), 1225 | DOI | MR | Zbl
[13] B. Champagne, P. Winternitz, J. Math. Phys., 29 (1988), 1 | DOI | MR | Zbl
[14] M. Senthil Velan, M. Lakshmanan, J. Nonlinear Math. Phys., 5 (1998), 190 | DOI | MR | Zbl
[15] N. Kudriashov, P. Pickering, J. Phys. A, 31 (1998), 9505 | DOI | MR
[16] J. Ramirez, M. S. Bruzón, C. Muriel, M. L. Gandarias, J. Phys. A, 36 (2003), 1467 | DOI | MR | Zbl
[17] M. L. Gandarias, M. S. Bruzón, J. Ramírez, “Classical symmetries for a Boussinesq equation with nonlinear dispersion”, Symmetry and Perturbation Theory, eds. D. Bambusi, G. Gaeta, M. Cadoni, World Scientific, River Edge, NJ, 2001 ; М. Л. Гандариас, М. С. Брузон, Х. Рамирес, ТМФ, 134:1 (2003), 74 | MR | DOI | MR | Zbl
[18] M. Wadati, J. Phys. Soc. Japan, 34 (1973), 1289 | DOI | MR | Zbl