The Calogero–Bogoyavlenskii–Schiff Equation in $2+1$ Dimensions
Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 1, pp. 14-26 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use the classical and nonclassical methods to obtain symmetry reductions and exact solutions of the $(2+1)$-dimensional integrable Calogero–Bogoyavlenskii–Schiff equation. Although this $(2+1)$-dimensional equation arises in a nonlocal form, it can be written as a system of differential equations and, in potential form, as a fourth-order partial differential equation. The classical and nonclassical methods yield some exact solutions of the $(2+1)$-dimensional equation that involve several arbitrary functions and hence exhibit a rich variety of qualitative behavior.
Keywords: partial differential equations, symmetries.
@article{TMF_2003_137_1_a2,
     author = {M. S. Bruz\'on and M. L. Gandarias and C. Muriel and J. Ram{\'\i}res and S. Saez and F. R. Romero},
     title = {The {Calogero{\textendash}Bogoyavlenskii{\textendash}Schiff} {Equation} in $2+1$ {Dimensions}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {14--26},
     year = {2003},
     volume = {137},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_137_1_a2/}
}
TY  - JOUR
AU  - M. S. Bruzón
AU  - M. L. Gandarias
AU  - C. Muriel
AU  - J. Ramíres
AU  - S. Saez
AU  - F. R. Romero
TI  - The Calogero–Bogoyavlenskii–Schiff Equation in $2+1$ Dimensions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 14
EP  - 26
VL  - 137
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_137_1_a2/
LA  - ru
ID  - TMF_2003_137_1_a2
ER  - 
%0 Journal Article
%A M. S. Bruzón
%A M. L. Gandarias
%A C. Muriel
%A J. Ramíres
%A S. Saez
%A F. R. Romero
%T The Calogero–Bogoyavlenskii–Schiff Equation in $2+1$ Dimensions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 14-26
%V 137
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2003_137_1_a2/
%G ru
%F TMF_2003_137_1_a2
M. S. Bruzón; M. L. Gandarias; C. Muriel; J. Ramíres; S. Saez; F. R. Romero. The Calogero–Bogoyavlenskii–Schiff Equation in $2+1$ Dimensions. Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 1, pp. 14-26. http://geodesic.mathdoc.fr/item/TMF_2003_137_1_a2/

[1] O. I. Bogoyavlenskii, Izv. RAN. Ser. matem., 53:2 (1989), 243 | MR

[2] O. I. Bogoyavlenskii, Izv. RAN. Ser. matem., 53:4 (1989), 907 | MR | Zbl

[3] O. I. Bogoyavlenskii, Izv. RAN. Ser. matem., 54:1 (1990), 123 | MR | Zbl

[4] J. Schiff, “Integrability of Chern–Simon–Higgs vortex equations and a reduction of the self-dual Yang–Mills equations to three dimensions”, Painlevé Trascendents, Their Asymptotics and Physical Applications, Proc. of the NATO Advanced Research Workshop (Sainte-Adčle, Canada, September 3–7, 1990), NATO ASI Ser., Ser. B, Phys., 278, eds. D. Levi et al., Plenum, New York, 1992, 393 | DOI | MR | Zbl

[5] B. Grammaticos, A. Ramani, J. Hitarinta, Phys. Lett. A, 190 (1994), 65 | DOI | MR

[6] K. Toda, S. Yu, J. Math. Phys., 41 (2000), 4747 | DOI | MR | Zbl

[7] M. Senthil Velan, M. Lakshmanan, J. Nonlinear Math. Phys., 5 (1998), 190 | DOI | MR | Zbl