Nonautonomous Integrable Systems Associated with Hurwitz Spaces in Genuses Zero and One
Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 1, pp. 153-160
Voir la notice de l'article provenant de la source Math-Net.Ru
Briefly outlining our recent work, we construct a family of nonautonomous integrable systems (deformations of the principal chiral model) in connection with the Hurwitz spaces of meromorphic functions on the Riemann sphere, cylinder, and torus. We give differential equations describing the dependence of the critical points of the rational, elliptic, and trigonometric functions on the critical values. We outline a relation to the deformation framework of Burtzev–Mikhailov–Zakharov.
Keywords:
Hurwitz spaces, deformations of integrable systems.
@article{TMF_2003_137_1_a15,
author = {A. Yu. Kokotov and D. A. Korotkin and V. Shramchenko},
title = {Nonautonomous {Integrable} {Systems} {Associated} with {Hurwitz} {Spaces} in {Genuses} {Zero} and {One}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {153--160},
publisher = {mathdoc},
volume = {137},
number = {1},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2003_137_1_a15/}
}
TY - JOUR AU - A. Yu. Kokotov AU - D. A. Korotkin AU - V. Shramchenko TI - Nonautonomous Integrable Systems Associated with Hurwitz Spaces in Genuses Zero and One JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2003 SP - 153 EP - 160 VL - 137 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2003_137_1_a15/ LA - ru ID - TMF_2003_137_1_a15 ER -
%0 Journal Article %A A. Yu. Kokotov %A D. A. Korotkin %A V. Shramchenko %T Nonautonomous Integrable Systems Associated with Hurwitz Spaces in Genuses Zero and One %J Teoretičeskaâ i matematičeskaâ fizika %D 2003 %P 153-160 %V 137 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2003_137_1_a15/ %G ru %F TMF_2003_137_1_a15
A. Yu. Kokotov; D. A. Korotkin; V. Shramchenko. Nonautonomous Integrable Systems Associated with Hurwitz Spaces in Genuses Zero and One. Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 1, pp. 153-160. http://geodesic.mathdoc.fr/item/TMF_2003_137_1_a15/