Superintegrable Systems with Third-Order Integrals in Classical and Quantum Mechanics
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 1, pp. 97-107
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We review systems in $E(2)$ that are separable in Cartesian coordinates and admit a third-order integral both in quantum mechanics and in classical mechanics. Differences and similarities between those two cases are illustrated by numerous examples. Many of these superintegrable systems are new, and a relation is seen between superintegrable potentials and Painlevé transcendents.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
integrals of motion, superintegrability, separation of variables.
                    
                  
                
                
                @article{TMF_2003_137_1_a10,
     author = {S. Gravel},
     title = {Superintegrable {Systems} with {Third-Order} {Integrals} in {Classical} and {Quantum} {Mechanics}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {97--107},
     publisher = {mathdoc},
     volume = {137},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_137_1_a10/}
}
                      
                      
                    TY - JOUR AU - S. Gravel TI - Superintegrable Systems with Third-Order Integrals in Classical and Quantum Mechanics JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2003 SP - 97 EP - 107 VL - 137 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2003_137_1_a10/ LA - ru ID - TMF_2003_137_1_a10 ER -
S. Gravel. Superintegrable Systems with Third-Order Integrals in Classical and Quantum Mechanics. Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 1, pp. 97-107. http://geodesic.mathdoc.fr/item/TMF_2003_137_1_a10/
