Superintegrable Systems with Third-Order Integrals in Classical and Quantum Mechanics
Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 1, pp. 97-107 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We review systems in $E(2)$ that are separable in Cartesian coordinates and admit a third-order integral both in quantum mechanics and in classical mechanics. Differences and similarities between those two cases are illustrated by numerous examples. Many of these superintegrable systems are new, and a relation is seen between superintegrable potentials and Painlevé transcendents.
Keywords: integrals of motion, superintegrability, separation of variables.
@article{TMF_2003_137_1_a10,
     author = {S. Gravel},
     title = {Superintegrable {Systems} with {Third-Order} {Integrals} in {Classical} and {Quantum} {Mechanics}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {97--107},
     year = {2003},
     volume = {137},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_137_1_a10/}
}
TY  - JOUR
AU  - S. Gravel
TI  - Superintegrable Systems with Third-Order Integrals in Classical and Quantum Mechanics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 97
EP  - 107
VL  - 137
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_137_1_a10/
LA  - ru
ID  - TMF_2003_137_1_a10
ER  - 
%0 Journal Article
%A S. Gravel
%T Superintegrable Systems with Third-Order Integrals in Classical and Quantum Mechanics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 97-107
%V 137
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2003_137_1_a10/
%G ru
%F TMF_2003_137_1_a10
S. Gravel. Superintegrable Systems with Third-Order Integrals in Classical and Quantum Mechanics. Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 1, pp. 97-107. http://geodesic.mathdoc.fr/item/TMF_2003_137_1_a10/

[1] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1979 ; Г. Голдстейн, Классическая механика, Наука, М., 1974 | MR | Zbl | MR

[2] J. Hietarinta, Phys. Lett. A, 246 (1998), 97–104 | DOI | MR | Zbl

[3] J. Hietarinta, J. Math. Phys., 25 (1984), 1833–1840 | DOI | MR

[4] J. Hietarinta, J. Phys. A, 22 (1989), L143–L147 | DOI | MR

[5] M. B. Sheftel, P. Tempesta, P. Winternitz, J. Math. Phys., 42 (2001), 659–673 | DOI | MR | Zbl

[6] M. A. Rodriguez, P. Winternitz, J. Math. Phys., 43 (2002), 1309–1322 | DOI | MR | Zbl

[7] N. W. Evans, Phys. Rev. A, 41 (1990), 5666–5676 ; J. Math. Phys., 32 (1991), 3369–3375 ; Phys. Lett. A, 147 (1990), 483–486 ; A. Makarov, J. Smorodinsky, Kh. Valiev, P. Winternitz, Nuovo Cimento A, 52 (1967), 1061–1084 ; П. Винтерниц, Я. Смородинский, М. Ульрих, И. Фриз, ЯФ, 4 (1966), 625–635 | DOI | MR | DOI | MR | Zbl | DOI | MR | DOI

[8] E. G. Kalnins, W. Miller Jr., G. S. Pogosyan, J. Phys. A, 34 (2001), 4705–4720 ; M. F. Rañada, M. Santander, J. Math. Phys., 40 (1999), 5026–5057 | DOI | MR | Zbl | DOI | MR | Zbl

[9] E. G. Kalnins, J. M. Kress, P. Winternitz, J. Math. Phys., 43 (2002), 970–983 | DOI | MR | Zbl

[10] P. Tempesta, A. V. Turbiner, P. Winternitz, J. Math. Phys., 42 (2001), 4248–4257 | DOI | MR | Zbl

[11] J. Drach, C. R. Acad. Sci., 200 (1935), 22 | Zbl

[12] C. R. Holt, J. Math. Phys., 23 (1982), 1037–1046 ; A. S. Fokas, P. A. Lagerstrom, J. Math. Anal. Appl., 74 (1980), 325–341 ; 342–358 ; C. Gonera, P. Kosinsky, P. Maslanka, Phys. Lett. A, 289 (2001), 66–68 ; M. Karlovini, K. Rosquist, J. Math. Phys., 41 (2000), 370–384 | DOI | MR | Zbl | DOI | MR | Zbl | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[13] A. V. Tsiganov, J. Phys. A, 33 (2000), 7407–7422 | DOI | MR | Zbl

[14] J. Hietarinta, B. Grammaticos, J. Phys. A, 22 (1989), 1315–1322 | DOI | MR

[15] S. Gravel, P. Winternitz, “Superintegrable systems with third-order integrals in classical and quantum mechanics”, J. Math. Phys. (to appear) | MR

[16] J. Jauch, E. Hill, Phys. Rev., 51 (1940), 641–645 | DOI | MR