@article{TMF_2003_137_1_a1,
author = {C. Athorne},
title = {Covariant {Hyperelliptic} {Functions} of {Genus} {Two}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {5--13},
year = {2003},
volume = {137},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2003_137_1_a1/}
}
C. Athorne. Covariant Hyperelliptic Functions of Genus Two. Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 1, pp. 5-13. http://geodesic.mathdoc.fr/item/TMF_2003_137_1_a1/
[1] C. Athorne, J. J. C. Eilbeck, V. Z. Enolski, An $SL_2$ covariant theory of genus 2 hyperelliptic functions, Glasgow Dept. Math. Preprint, Glasgow Dept. Math., Glasgow, 2002 | MR
[2] C. Athorne, J. J. C. Eilbeck, V. Z. Enolski, Identities for the classical genus 2 $\wp$ function, Glasgow Dept. Math. Preprint, Glasgow Dept. Math., Glasgow, 2002 | MR
[3] H. F. Baker, Multiply Periodic Functions, Cambridge Univ. Press, Cambridge, 1907 | Zbl
[4] R. Hirota, “Direct method of finding exact solutions of nonlinear evolution equations”, Bäcklund Transformations, the Inverse Scattering Method, Solitons, and Their Applications, Lect. Notes Math., 515, ed. R. M. Miura, Springer, Berlin, 1976, 40–68 | DOI | MR
[5] C. Athorne, Phys. Lett. A, 256 (1999), 20–24 | DOI | MR | Zbl
[6] C. Athorne, Glasgow Math. J., 2001, 1–8 | DOI | MR | Zbl
[7] B. Grammaticos, A. Ramani, J. Hietarinta, Phys. Lett. A, 190 (1994), 65–70 | DOI | MR
[8] P. J. Olver, J. A. Sanders, Adv. Appl. Math., 25 (2000), 252–283 | DOI | MR | Zbl
[9] V. M. Buchstaber, V. Z. Enolski'i, D. V. Leykin, Rev. Math. Phys., 10 (1997), 3–120 | Zbl