Evolution of Measures in the Phase Space of Nonlinear Hamiltonian Systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 136 (2003) no. 3, pp. 496-506

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish the existence of weak limits of solutions (in the class $L_p$, $p\ge1$) of the Liouville equation for nondegenerate quasihomogeneous Hamilton equations. We find the limit probability distributions in the configuration space. We give conditions for a uniform distribution of Gibbs ensembles for geodesic flows on compact manifolds.
Keywords: quasihomogeneous Hamiltonian system, geodesic flow, weak limit, uniform distribution.
Mots-clés : Gibbs ensemble
@article{TMF_2003_136_3_a9,
     author = {V. V. Kozlov and D. V. Treschev},
     title = {Evolution of {Measures} in the {Phase} {Space} of {Nonlinear} {Hamiltonian} {Systems}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {496--506},
     publisher = {mathdoc},
     volume = {136},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_136_3_a9/}
}
TY  - JOUR
AU  - V. V. Kozlov
AU  - D. V. Treschev
TI  - Evolution of Measures in the Phase Space of Nonlinear Hamiltonian Systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 496
EP  - 506
VL  - 136
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_136_3_a9/
LA  - ru
ID  - TMF_2003_136_3_a9
ER  - 
%0 Journal Article
%A V. V. Kozlov
%A D. V. Treschev
%T Evolution of Measures in the Phase Space of Nonlinear Hamiltonian Systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 496-506
%V 136
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2003_136_3_a9/
%G ru
%F TMF_2003_136_3_a9
V. V. Kozlov; D. V. Treschev. Evolution of Measures in the Phase Space of Nonlinear Hamiltonian Systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 136 (2003) no. 3, pp. 496-506. http://geodesic.mathdoc.fr/item/TMF_2003_136_3_a9/