Evolution of Measures in the Phase Space of Nonlinear Hamiltonian Systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 136 (2003) no. 3, pp. 496-506
Voir la notice de l'article provenant de la source Math-Net.Ru
We establish the existence of weak limits of solutions (in the class $L_p$, $p\ge1$) of the Liouville equation for nondegenerate quasihomogeneous Hamilton equations. We find the limit probability distributions in the configuration space. We give conditions for a uniform distribution of Gibbs ensembles for geodesic flows on compact manifolds.
Keywords:
quasihomogeneous Hamiltonian system, geodesic flow, weak limit, uniform distribution.
Mots-clés : Gibbs ensemble
Mots-clés : Gibbs ensemble
@article{TMF_2003_136_3_a9,
author = {V. V. Kozlov and D. V. Treschev},
title = {Evolution of {Measures} in the {Phase} {Space} of {Nonlinear} {Hamiltonian} {Systems}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {496--506},
publisher = {mathdoc},
volume = {136},
number = {3},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2003_136_3_a9/}
}
TY - JOUR AU - V. V. Kozlov AU - D. V. Treschev TI - Evolution of Measures in the Phase Space of Nonlinear Hamiltonian Systems JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2003 SP - 496 EP - 506 VL - 136 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2003_136_3_a9/ LA - ru ID - TMF_2003_136_3_a9 ER -
V. V. Kozlov; D. V. Treschev. Evolution of Measures in the Phase Space of Nonlinear Hamiltonian Systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 136 (2003) no. 3, pp. 496-506. http://geodesic.mathdoc.fr/item/TMF_2003_136_3_a9/