Evolution of Measures in the Phase Space of Nonlinear Hamiltonian Systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 136 (2003) no. 3, pp. 496-506
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We establish the existence of weak limits of solutions (in the class $L_p$, $p\ge1$) of the Liouville equation for nondegenerate quasihomogeneous Hamilton equations. We find the limit probability distributions in the configuration space. We give conditions for a uniform distribution of Gibbs ensembles for geodesic flows on compact manifolds.
Keywords: quasihomogeneous Hamiltonian system, geodesic flow, weak limit, uniform distribution.
Mots-clés : Gibbs ensemble
@article{TMF_2003_136_3_a9,
     author = {V. V. Kozlov and D. V. Treschev},
     title = {Evolution of {Measures} in the {Phase} {Space} of {Nonlinear} {Hamiltonian} {Systems}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {496--506},
     year = {2003},
     volume = {136},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_136_3_a9/}
}
TY  - JOUR
AU  - V. V. Kozlov
AU  - D. V. Treschev
TI  - Evolution of Measures in the Phase Space of Nonlinear Hamiltonian Systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 496
EP  - 506
VL  - 136
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_136_3_a9/
LA  - ru
ID  - TMF_2003_136_3_a9
ER  - 
%0 Journal Article
%A V. V. Kozlov
%A D. V. Treschev
%T Evolution of Measures in the Phase Space of Nonlinear Hamiltonian Systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 496-506
%V 136
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2003_136_3_a9/
%G ru
%F TMF_2003_136_3_a9
V. V. Kozlov; D. V. Treschev. Evolution of Measures in the Phase Space of Nonlinear Hamiltonian Systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 136 (2003) no. 3, pp. 496-506. http://geodesic.mathdoc.fr/item/TMF_2003_136_3_a9/

[1] M. A. Ackoglu, Canad. J. Math., 27 (1975), 1075 | DOI | MR

[2] A. Ionescu-Tulcea, Bull. Amer. Math. Soc., 70:3 (1964), 366 | DOI | MR | Zbl

[3] V. V. Kozlov, Dokl. RAN, 382:5 (2002), 602 | MR

[4] V. V. Kozlov, D. V. Treschev, TMF, 134:3 (2003), 388 | DOI | MR | Zbl

[5] A. Puankare, “Zamechaniya o kineticheskoi teorii gazov”, A. Puankare. Izbrannye trudy, T. III, Nauka, M., 1974, 385 | MR

[6] V. V. Kozlov, Regul. Chaotic Dyn., 6:3 (2001), 235 | DOI | MR | Zbl

[7] V. V. Kozlov, D. V. Treschev, Billiardy. Geneticheskoe vvedenie v dinamiku sistem s udarami, Izd-vo MGU, M., 1991 | MR | Zbl

[8] Ya. G. Sinai, UMN, 25:2 (1970), 141 | MR | Zbl

[9] D. Szász, Sci. Math. Hungarica, 31:1–3 (1996), 299 | MR | Zbl

[10] U. Krengel, Ergodic Theorems, Gruyter, Berlin, 1985 | MR | Zbl

[11] V. V. Nemytskii, V. V. Stepanov, Kachestvennaya teoriya differentsialnykh uravnenii, Gostekhizdat, M.–L., 1949