Equation for a Product of Solutions of Two Different Schr\"odinger Equations
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 136 (2003) no. 3, pp. 410-417
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Under the assumption that potentials in two Schrödinger equations differ by a polynomial of degree $k$, we derive a ($k+4$)th-order equation for a function that is a product of solutions of these equations. Several examples of applications in physics are considered.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
linear ODEs with polynomial coefficients
Mots-clés : matrix elements, product of solutions of ODEs.
                    
                  
                
                
                Mots-clés : matrix elements, product of solutions of ODEs.
@article{TMF_2003_136_3_a3,
     author = {S. Yu. Slavyanov},
     title = {Equation for a {Product} of {Solutions} of {Two} {Different} {Schr\"odinger} {Equations}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {410--417},
     publisher = {mathdoc},
     volume = {136},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_136_3_a3/}
}
                      
                      
                    TY - JOUR AU - S. Yu. Slavyanov TI - Equation for a Product of Solutions of Two Different Schr\"odinger Equations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2003 SP - 410 EP - 417 VL - 136 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2003_136_3_a3/ LA - ru ID - TMF_2003_136_3_a3 ER -
S. Yu. Slavyanov. Equation for a Product of Solutions of Two Different Schr\"odinger Equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 136 (2003) no. 3, pp. 410-417. http://geodesic.mathdoc.fr/item/TMF_2003_136_3_a3/
