Equation for a Product of Solutions of Two Different Schr\"odinger Equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 136 (2003) no. 3, pp. 410-417

Voir la notice de l'article provenant de la source Math-Net.Ru

Under the assumption that potentials in two Schrödinger equations differ by a polynomial of degree $k$, we derive a ($k+4$)th-order equation for a function that is a product of solutions of these equations. Several examples of applications in physics are considered.
Keywords: linear ODEs with polynomial coefficients
Mots-clés : matrix elements, product of solutions of ODEs.
@article{TMF_2003_136_3_a3,
     author = {S. Yu. Slavyanov},
     title = {Equation for a {Product} of {Solutions} of {Two} {Different} {Schr\"odinger} {Equations}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {410--417},
     publisher = {mathdoc},
     volume = {136},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_136_3_a3/}
}
TY  - JOUR
AU  - S. Yu. Slavyanov
TI  - Equation for a Product of Solutions of Two Different Schr\"odinger Equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 410
EP  - 417
VL  - 136
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_136_3_a3/
LA  - ru
ID  - TMF_2003_136_3_a3
ER  - 
%0 Journal Article
%A S. Yu. Slavyanov
%T Equation for a Product of Solutions of Two Different Schr\"odinger Equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 410-417
%V 136
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2003_136_3_a3/
%G ru
%F TMF_2003_136_3_a3
S. Yu. Slavyanov. Equation for a Product of Solutions of Two Different Schr\"odinger Equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 136 (2003) no. 3, pp. 410-417. http://geodesic.mathdoc.fr/item/TMF_2003_136_3_a3/