Multimode Relativistic String: Classical Solutions and Quantization
Teoretičeskaâ i matematičeskaâ fizika, Tome 136 (2003) no. 3, pp. 380-409 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We find all independent classical solutions for the three-mode Nambu–Goto string. We investigate the geometry of the closed curves obtained. Canonical quantization is performed for a part of the solutions obtained. We consider the spectrum of the quantum states obtained. It is consistent with the experimental masses and quantum numbers of mesons corresponding to glueballs. The leading Regge trajectory of the obtained states is consistent with the available data on the Pomeron trajectory.
Keywords: relativistic string, glueball spectrum.
Mots-clés : relativistic quantization
@article{TMF_2003_136_3_a2,
     author = {L. D. Solov'ev},
     title = {Multimode {Relativistic} {String:} {Classical} {Solutions} and {Quantization}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {380--409},
     year = {2003},
     volume = {136},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_136_3_a2/}
}
TY  - JOUR
AU  - L. D. Solov'ev
TI  - Multimode Relativistic String: Classical Solutions and Quantization
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 380
EP  - 409
VL  - 136
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_136_3_a2/
LA  - ru
ID  - TMF_2003_136_3_a2
ER  - 
%0 Journal Article
%A L. D. Solov'ev
%T Multimode Relativistic String: Classical Solutions and Quantization
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 380-409
%V 136
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2003_136_3_a2/
%G ru
%F TMF_2003_136_3_a2
L. D. Solov'ev. Multimode Relativistic String: Classical Solutions and Quantization. Teoretičeskaâ i matematičeskaâ fizika, Tome 136 (2003) no. 3, pp. 380-409. http://geodesic.mathdoc.fr/item/TMF_2003_136_3_a2/

[1] G. P. Pronko, A. V. Razumov, TMF, 56:2 (1983), 192 | MR | Zbl

[2] L. D. Solovev, TMF, 116:2 (1998), 225 ; ЯФ, 62 (1999), 534; L. D. Soloviev, Phys. Rev. D, 61 (2000), 015009 | DOI | DOI | MR

[3] L. D. Solovev, TMF, 126:2 (2001), 247 | DOI | Zbl

[4] G. P. Pronko, A. V. Razumov, L. D. Solovev, EChAYa, 14 (1983), 558 | MR

[5] L. Faddeev, R. Jackiw, Phys. Rev. Lett., 60 (1988), 1692 | DOI | MR | Zbl

[6] A. A. Savelov, Ploskie krivye. Sistematika, svoistva, primeneniya, Spravochnoe rukovodstvo, Fizmatgiz, M., 1960 | MR

[7] P. Dirak, Lektsii po kvantovoi mekhanike, Mir, M., 1968; P. G. Bergman, Helv. Phys. Acta Suppl., 4 (1956), 79

[8] A. V. Razumov, L. D. Solovev, Vvedenie v klassicheskuyu mekhaniku sistem so svyazyami. I; II; III, Preprinty IFVE No 86-212; 86-213; 86-214, ИФВЭ, Серпухов, 1986

[9] L. D. Soloviev, “String model of confinement”, Proc. of the X Int. Conf. “Problems of Quantum Field Theory” (Alushta, Ukraine, May 13–18, 1996), eds. D. Shirkov, D. Kazakov, A. Vladimirov, JINR, Dubna, 1996, 75 ; “Hadrons and strings”, Problems of High Energy Physics and Field Theory, Proc. of the XIX Workshop on High Energy Physics and Field Theory (Protvino, June 25–27, 1996), eds. V. A. Petrov, A. P. Samokhin, R. N. Rogalyov, IHEP, Protvino, 1997, 127 | MR

[10] D. E. Groom et al. Particle Data Group, Eur. Phys. J. C, 15 (2000), 405 ; 451; 456; ; 482 | DOI

[11] V. A. Petrov, A. V. Prokudin, “Regge eikonal approach and its off-shell extension versus experimental data”, Proc. of the Int. Conf. on Elastic and Diffractive Scattering (Protvino, June 28–July 2, 1999), eds. V. A. Petrov, A. V. Prokudin, World Scientific, Singapore, 2000, 95 | DOI