Mathematical Model of Resonances and Tunneling in a System with a Bound State
Teoretičeskaâ i matematičeskaâ fizika, Tome 136 (2003) no. 3, pp. 507-516 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the asymptotic behavior of the residue at the pole of the analytic continuation of the scattering matrix as the imaginary part of the pole tends to zero in the case where the phase space of a quantum mechanical system is a direct sum of two spaces and the nonperturbed evolution operator reduces each of these spaces and has a discrete spectrum in one of them and a continuous spectrum in the other. The perturbation operator mixes the subspaces and generates a resonance. We prove that under certain symmetry conditions in such a system, the scattering amplitude changes sharply in a neighborhood of the real part of the pole of the scattering matrix, and the system demonstrates tunneling or a resonance of the scattering amplitude.
Keywords: scattering, resonance, tunneling.
@article{TMF_2003_136_3_a10,
     author = {A. A. Arsen'ev},
     title = {Mathematical {Model} of {Resonances} and {Tunneling} in a {System} with a {Bound} {State}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {507--516},
     year = {2003},
     volume = {136},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_136_3_a10/}
}
TY  - JOUR
AU  - A. A. Arsen'ev
TI  - Mathematical Model of Resonances and Tunneling in a System with a Bound State
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 507
EP  - 516
VL  - 136
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_136_3_a10/
LA  - ru
ID  - TMF_2003_136_3_a10
ER  - 
%0 Journal Article
%A A. A. Arsen'ev
%T Mathematical Model of Resonances and Tunneling in a System with a Bound State
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 507-516
%V 136
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2003_136_3_a10/
%G ru
%F TMF_2003_136_3_a10
A. A. Arsen'ev. Mathematical Model of Resonances and Tunneling in a System with a Bound State. Teoretičeskaâ i matematičeskaâ fizika, Tome 136 (2003) no. 3, pp. 507-516. http://geodesic.mathdoc.fr/item/TMF_2003_136_3_a10/

[1] B. O. Kerbikov, TMF, 65:3 (1985), 379–390

[2] R. F. Dashen, J. B. Healy, I. J. Muzinich, Ann. Phys., 102 (1976), 1–70 | DOI | MR

[3] R. F. Dashen, J. B. Healy, I. J. Muzinich, Phys. Rev. D, 14 (1976), 2773–2789 | DOI | MR

[4] J. Dereziński, V. Juks̆ić, J. Funct. Anal., 180 (2001), 243–327 | DOI | MR | Zbl

[5] K. Fridrikhs, Vozmuschenie spektra operatorov v gilbertovom prostranstve, Mir, M., 1969

[6] J. S. Howland, J. Math. Anal. Appl., 50 (1975), 415–437 | DOI | MR | Zbl

[7] G. Parravicini, V. Gorini, J. Math. Phys., 21 (1980), 2208–2226 | DOI | MR | Zbl

[8] Zh. I. Abdulaev, I. A. Ikromov, S. N. Lakaev, TMF, 103 (1995), 54–62 ; А. К. Мотовилов, ТМФ, 107 (1996), 450–477 ; 478–500 ; Р. Менникен, А. К. Мотовилов, ТМФ, 116 (1998), 163–181 ; В. Б. Беляев, А. К. Мотовилов, ТМФ, 111 (1997), 77–93 ; Ю. А. Куперин, К. А. Макаров, С. П. Меркурьев, А. К. Мотовилов, Б. С. Павлов, ТМФ, 75 (1988), 431–444 ; 76, 242–260 | MR | DOI | MR | Zbl | Zbl | DOI | MR | DOI | MR | Zbl | MR | MR

[9] Yu. A. Kuperin, K. A. Makarov, S. P. Merkurev, A. K. Motovilov, YaF, 48 (1988), 358–370 | MR

[10] R. Mennicken, A. K. Motovilov, Math. Nachr., 20 (1999), 117–181 ; A. K. Motovilov, J. Math. Phys., 32 (1991), 3509–3518 ; A. K. Motovilov, W. Sandhas, V. B. Belyaev, J. Math. Phys., 42 (2001), 2490–2506 | DOI | DOI | MR | DOI | MR | Zbl

[11] S. Agmon, Commun. Pure Appl. Math., 51 (1998), 1255–1309 | 3.0.CO;2-O class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[12] S. Albeverio, R. Hoegh-Krohn, J. Math. Anal. Appl., 101 (1984), 491–513 | DOI | MR | Zbl

[13] K. Moren, Metody gilbertova prostranstva, Mir, M., 1965 | MR

[14] A. A. Arsenev, TMF, 134 (2003), 341–352 | DOI | MR | Zbl

[15] D. R. Yafaev, Matematicheskaya teoriya rasseyaniya, Izd-vo Sankt-Peterburgskogo universiteta, Sankt-Peterburg, 1994 | MR

[16] A. A. Arsenev, Matem. sb., 187 (1996), 3–20 | DOI | MR | Zbl