Integration of Geodesic Flows on Homogeneous Spaces: The Case of a Wild Lie Group
Teoretičeskaâ i matematičeskaâ fizika, Tome 136 (2003) no. 3, pp. 365-379
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain necessary and sufficient conditions for the integrability in quadratures of geodesic flows on homogeneous spaces $M$ with invariant and central metrics. The proposed integration algorithm consists in using a special canonical transformation in the space $T^*M$ based on constructing the canonical coordinates on the orbits of the coadjoint representation and on the simplectic sheets of the Poisson algebra of invariant functions. This algorithm is applicable to integrating geodesic flows on homogeneous spaces of a wild Lie group.
Mots-clés :
Lie group, Poisson bracket.
Keywords: Lie algebra, homogeneous space, geodesic flow, invariant operator
Keywords: Lie algebra, homogeneous space, geodesic flow, invariant operator
@article{TMF_2003_136_3_a1,
author = {A. A. Magazev and I. V. Shirokov},
title = {Integration of {Geodesic} {Flows} on {Homogeneous} {Spaces:} {The} {Case} of a {Wild} {Lie} {Group}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {365--379},
publisher = {mathdoc},
volume = {136},
number = {3},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2003_136_3_a1/}
}
TY - JOUR AU - A. A. Magazev AU - I. V. Shirokov TI - Integration of Geodesic Flows on Homogeneous Spaces: The Case of a Wild Lie Group JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2003 SP - 365 EP - 379 VL - 136 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2003_136_3_a1/ LA - ru ID - TMF_2003_136_3_a1 ER -
%0 Journal Article %A A. A. Magazev %A I. V. Shirokov %T Integration of Geodesic Flows on Homogeneous Spaces: The Case of a Wild Lie Group %J Teoretičeskaâ i matematičeskaâ fizika %D 2003 %P 365-379 %V 136 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2003_136_3_a1/ %G ru %F TMF_2003_136_3_a1
A. A. Magazev; I. V. Shirokov. Integration of Geodesic Flows on Homogeneous Spaces: The Case of a Wild Lie Group. Teoretičeskaâ i matematičeskaâ fizika, Tome 136 (2003) no. 3, pp. 365-379. http://geodesic.mathdoc.fr/item/TMF_2003_136_3_a1/