Associativity and Operator Hamiltonian Quantization of Gauge Theories
Teoretičeskaâ i matematičeskaâ fizika, Tome 136 (2003) no. 3, pp. 339-364 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that the associative algebra structure can be incorporated in the BRST quantization formalism for gauge theories such that extension from the corresponding Lie algebra to the associative algebra is achieved using operator quantization of reducible gauge theories. The BRST differential that encodes the associativity of the algebra multiplication is constructed as a quadratic second-order differential operator on the bar resolution.
Mots-clés : associative algebras
Keywords: BRST differential, bar resolution, noncommutative differential forms.
@article{TMF_2003_136_3_a0,
     author = {I. A. Batalin and A. M. Semikhatov},
     title = {Associativity and {Operator} {Hamiltonian} {Quantization} of {Gauge} {Theories}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {339--364},
     year = {2003},
     volume = {136},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_136_3_a0/}
}
TY  - JOUR
AU  - I. A. Batalin
AU  - A. M. Semikhatov
TI  - Associativity and Operator Hamiltonian Quantization of Gauge Theories
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 339
EP  - 364
VL  - 136
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_136_3_a0/
LA  - ru
ID  - TMF_2003_136_3_a0
ER  - 
%0 Journal Article
%A I. A. Batalin
%A A. M. Semikhatov
%T Associativity and Operator Hamiltonian Quantization of Gauge Theories
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 339-364
%V 136
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2003_136_3_a0/
%G ru
%F TMF_2003_136_3_a0
I. A. Batalin; A. M. Semikhatov. Associativity and Operator Hamiltonian Quantization of Gauge Theories. Teoretičeskaâ i matematičeskaâ fizika, Tome 136 (2003) no. 3, pp. 339-364. http://geodesic.mathdoc.fr/item/TMF_2003_136_3_a0/

[1] I. A. Batalin, G. A. Vilkovisky, Phys. Lett. B, 102 (1981), 27–31 | DOI | MR

[2] I. A. Batalin, E. S. Fradkin, Ann. Inst. H. Poincaré (Phys. Theor.), 49 (1988), 145–214 | MR

[3] M. Henneaux, C. Teitelboim, Quantization of gauge systems, Princeton University Press, Princeton, 1992 | MR | Zbl

[4] J. Stasheff, Homological reduct ion of constrained Poisson algebras, E-print q-alg/9603021 | MR

[5] I. A. Batalin, E. S. Fradkin, Phys. Lett. B, 122 (1983), 157–164 | DOI | MR | Zbl

[6] I. A. Batalin, G. A. Vilkovisky, Phys. Lett. B, 120 (1983), 166–170 ; Phys. Rev. D, 28 (1983), 2567–2582 ; Erratum, 30 (1984), 508 ; G. A. Vilkovisky, Lett. Math. Phys., 49 (1999), 123–130 | DOI | MR | DOI | MR | DOI | MR | DOI | MR | Zbl

[7] R. Kallosh, W. Troost, A. Van Proeyen, Phys. Lett. B, 212 (1988), 428–436 ; E. Bergshoeff, R. Kallosh, T. Ortin, G. Papadopoulos, Nucl. Phys. B, 502 (1997), 149–169 | DOI | MR | DOI | MR | Zbl

[8] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer, Ann. Phys., 111 (1978), 61–110 ; 111–151 ; B. V. Fedosov, J. Diff. Geom., 40 (1994), 213–238 ; Deformation quantization and index theory, Mathematical topics, 9, Akademie-Verl., Berlin, 1996 ; M. Kontsevich, Deformation quantization of Poisson manifolds, I, E-print q-alg/9709040 | DOI | MR | Zbl | MR | Zbl | DOI | MR | Zbl | MR | MR

[9] W. Arveson, “The harmonic analysis of automorphism groups”, Operator Algebras and Applications, Part I. Proc. of the 28th Summer Institute of the American Mathematical Society (Queen's Univ., Kingston, Ont., July 14–August 2, 1980), Symp. Pure Math., 38, ed. R. V. Kadison, AMS, Providence, RI, 1982, 199–269 ; M. Karoubi, Astérisque, 149, 1987, 1–147 | DOI | MR

[10] J. Cuntz, D. Quillen, J. Am. Math. Soc., 8 (1995), 251–289 | DOI | MR | Zbl

[11] I. A. Batalin, I. V. Tyutin, J. Math. Phys., 34 (1993), 369–380 | DOI | MR | Zbl