Keywords: BRST differential, bar resolution, noncommutative differential forms.
@article{TMF_2003_136_3_a0,
author = {I. A. Batalin and A. M. Semikhatov},
title = {Associativity and {Operator} {Hamiltonian} {Quantization} of {Gauge} {Theories}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {339--364},
year = {2003},
volume = {136},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2003_136_3_a0/}
}
TY - JOUR AU - I. A. Batalin AU - A. M. Semikhatov TI - Associativity and Operator Hamiltonian Quantization of Gauge Theories JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2003 SP - 339 EP - 364 VL - 136 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2003_136_3_a0/ LA - ru ID - TMF_2003_136_3_a0 ER -
I. A. Batalin; A. M. Semikhatov. Associativity and Operator Hamiltonian Quantization of Gauge Theories. Teoretičeskaâ i matematičeskaâ fizika, Tome 136 (2003) no. 3, pp. 339-364. http://geodesic.mathdoc.fr/item/TMF_2003_136_3_a0/
[1] I. A. Batalin, G. A. Vilkovisky, Phys. Lett. B, 102 (1981), 27–31 | DOI | MR
[2] I. A. Batalin, E. S. Fradkin, Ann. Inst. H. Poincaré (Phys. Theor.), 49 (1988), 145–214 | MR
[3] M. Henneaux, C. Teitelboim, Quantization of gauge systems, Princeton University Press, Princeton, 1992 | MR | Zbl
[4] J. Stasheff, Homological reduct ion of constrained Poisson algebras, E-print q-alg/9603021 | MR
[5] I. A. Batalin, E. S. Fradkin, Phys. Lett. B, 122 (1983), 157–164 | DOI | MR | Zbl
[6] I. A. Batalin, G. A. Vilkovisky, Phys. Lett. B, 120 (1983), 166–170 ; Phys. Rev. D, 28 (1983), 2567–2582 ; Erratum, 30 (1984), 508 ; G. A. Vilkovisky, Lett. Math. Phys., 49 (1999), 123–130 | DOI | MR | DOI | MR | DOI | MR | DOI | MR | Zbl
[7] R. Kallosh, W. Troost, A. Van Proeyen, Phys. Lett. B, 212 (1988), 428–436 ; E. Bergshoeff, R. Kallosh, T. Ortin, G. Papadopoulos, Nucl. Phys. B, 502 (1997), 149–169 | DOI | MR | DOI | MR | Zbl
[8] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer, Ann. Phys., 111 (1978), 61–110 ; 111–151 ; B. V. Fedosov, J. Diff. Geom., 40 (1994), 213–238 ; Deformation quantization and index theory, Mathematical topics, 9, Akademie-Verl., Berlin, 1996 ; M. Kontsevich, Deformation quantization of Poisson manifolds, I, E-print q-alg/9709040 | DOI | MR | Zbl | MR | Zbl | DOI | MR | Zbl | MR | MR
[9] W. Arveson, “The harmonic analysis of automorphism groups”, Operator Algebras and Applications, Part I. Proc. of the 28th Summer Institute of the American Mathematical Society (Queen's Univ., Kingston, Ont., July 14–August 2, 1980), Symp. Pure Math., 38, ed. R. V. Kadison, AMS, Providence, RI, 1982, 199–269 ; M. Karoubi, Astérisque, 149, 1987, 1–147 | DOI | MR
[10] J. Cuntz, D. Quillen, J. Am. Math. Soc., 8 (1995), 251–289 | DOI | MR | Zbl
[11] I. A. Batalin, I. V. Tyutin, J. Math. Phys., 34 (1993), 369–380 | DOI | MR | Zbl